In Vitro Electrophysiological Mapping of Stem Cells

  • Seth Weinberg
  • Elizabeth A. Lipke
  • Leslie Tung
Part of the Methods in Molecular Biology book series (MIMB, volume 660)


The use of stem cells for cardiac regeneration is a revolutionary, emerging research area. For proper function as replacement tissue, stem cell-derived cardiomyocytes (SC-CMs) must electrically couple with the host cardiac tissue. Electrophysiological mapping techniques, including microelectrode array (MEA) and optical mapping, have been developed to study cardiomyocytes and cardiac cell monolayers, and these can be applied to study stem cells and SC-CMs. MEA recordings take extracellular measurements at numerous points across a small area of cell cultures and are used to assess electrical propagation during cell culture. Optical mapping uses fluorescent dyes to monitor electrophysiological changes in cells, most commonly transmembrane potential and intracellular calcium, and can be easily scaled to areas of different sizes. The materials and methods for MEA and optical mapping are presented here, together with detailed notes on their use, design, and fabrication. We also provide examples of voltage and calcium maps of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs), obtained in our laboratory using optical mapping techniques.

Key words

Electrophysiology Microelectrode array Optical mapping Embryonic stem cell Cardiomyocyte 



This work was supported by NIH grants R01 HL066239 (L.T.) and T32-HL07581 (A. Shoukas), and grants from the Joint Technion-Hopkins Program for the Biomedical Sciences and Biomedical Engineering (L.T. and L. Gepstein) and from the Maryland Stem Cell Research Fund (L.T.). We thank Dr. Lior Gepstein for training E.L. in his lab on the use of MEAs.


  1. 1.
    Reppel, M., Pillekamp, F., Lu, Z. J., Halbach, M., Brockmeier, K., Fleischmann, B. K., and Hescheler, J. (2004) Microelectrode arrays: a new tool to measure embryonic heart activity. J Electrocardiol 37 Suppl, 104–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Egert, U., and Meyer, T. (2005) Heart on a chip – extracellular multielectrode recordings from cardiac myocytes in vitro. in Practical Methods in Cardiovascular Research (Dhein, S., Mohr, F. W., and Delmar, M., Eds.) pp 432–453, Springer, Berlin.CrossRefGoogle Scholar
  3. 3.
    Binah, O., Dolnikov, K., Sadan, O., Shilkrut, M., Zeevi-Levin, N., Amit, M., Danon, A., and Itskovitz-Eldor, J. (2007) Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes J Electrocardiol 40, S192–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Igelmund, P., Fleischmann, B. K., Fischer, I. R., Soest, J., Gryshchenko, O., Bohm-Pinger, M. M., Sauer, H., Liu, Q., and Hescheler, J. (1999) Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue culture Pflugers Arch 437, 669–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes J Clin Invest 108, 407–14.PubMedGoogle Scholar
  6. 6.
    Banach, K., Halbach, M. D., Hu, P., Hescheler, J., and Egert, U. (2003) Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells Am J Physiol Heart Circ Physiol 284, H2114–23.PubMedGoogle Scholar
  7. 7.
    Beeres, S. L., Atsma, D. E., van der Laarse, A., Pijnappels, D. A., van Tuyn, J., Fibbe, W. E., de Vries, A. A., Ypey, D. L., van der Wall, E. E., and Schalij, M. J. (2005) Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures J Am Coll Cardiol 46, 1943–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells Nat Biotechnol 22, 1282–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Caspi, O., Itzhaki, I., Arbel, G., Kehat, I., Gepstien, A., Huber, I., Satin, J., and Gepstein, L. (2009) In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 18, 161-72.PubMedCrossRefGoogle Scholar
  10. 10.
    Meyer, T., Boven, K. H., Gunther, E., and Fejtl, M. (2004) Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation Drug Saf 27, 763–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Windisch, H., Ahammer, H., Schaffer, P., Muller, W., and Platzer, D. (1995) Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes Pflugers Arch 430, 508–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Rohr, S., and Salzberg, B. M. (1994) Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale Biophys J 67, 1301–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Fast, V. G., and Kleber, A. G. (1993) Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes Circ Res 73, 914–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Entcheva, E., Lu, S. N., Troppman, R. H., Sharma, V., and Tung, L. (2000) Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes J Cardiovasc Electrophysiol 11, 665–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Efimov, I. R., Nikolski, V. P., and Salama, G. (2004) Optical imaging of the heart Circ Res 95, 21–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Salama, G., and Morad, M. (1976) Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191, 485–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Gray, R. A., Jalife, J., Panfilov, A., Baxter, W. T., Cabo, C., Davidenko, J. M., and Pertsov, A. M. (1995) Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart Circulation 91, 2454–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Dillon, S. M. (1991) Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period Circ Res 69, 842–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Morad, M., and Salama, G. (1979) Optical probes of membrane potential in heart muscle J Physiol 292, 267–95.PubMedGoogle Scholar
  20. 20.
    Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., and Karma, A. (2006) Spatially discordant alternans in cardiac tissue: role of calcium cycling Circ Res 99, 520–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang, S. M., Yea, K. H., and Lee, K. J. (2004) Regular and alternant spiral waves of contractile motion on rat ventricle cell cultures Phys Rev Lett 92, 198103.PubMedCrossRefGoogle Scholar
  22. 22.
    Tung, L., and Zhang, Y. (2006) Optical ­imaging of arrhythmias in tissue culture J Electrocardiol 39, S2–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Entcheva, E., and Bien, H. (2006) Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution Prog Biophys Mol Biol 92, 232–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Fast, V. G. (2005) Recording action potentials using voltage-sensitive dyes. in Practical Methods in Cardiovascular Research (Dhein, S., Mohr, F. W., and Delmar, M., Eds.) pp 233–255, Springer, Berlin.CrossRefGoogle Scholar
  25. 25.
    Lagostena, L., Avitabile, D., De Falco, E., Orlandi, A., Grassi, F., Iachininoto, M. G., Ragone, G., Fucile, S., Pompilio, G., Eusebi, F., Pesce, M., and Capogrossi, M. C. (2005) Electrophysiological properties of mouse bone marrow c-kit+ cells co-cultured onto neonatal cardiac myocytes Cardiovasc Res 66, 482–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Orlandi, A., Pagani, F., Avitabile, D., Bonanno, G., Scambia, G., Vigna, E., Grassi, F., Eusebi, F., Fucile, S., Pesce, M., and Capogrossi, M. C. (2008) Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture Am J Physiol Heart Circ Physiol 294, H1541–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Dolnikov, K., Shilkrut, M., Zeevi-Levin, N., Gerecht-Nir, S., Amit, M., Danon, A., Itskovitz-Eldor, J., and Binah, O. (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction Stem Cells 24, 236–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Kapur, N., Mignery, G. A., and Banach, K. (2007) Cell cycle-dependent calcium oscillations in mouse embryonic stem cells Am J Physiol Cell Physiol 292, C1510–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Sauer, H., Hofmann, C., Wartenberg, M., Wobus, A. M., and Hescheler, J. (1998) Spontaneous calcium oscillations in embryonic stem cell-derived primitive endodermal cells Exp Cell Res 238, 13–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Egert, U., Knott, T., Schwarz, C., Nawrot, M., Brandt, A., Rotter, S., and Diesmann, M. (2002) MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB J Neurosci Methods 117, 33–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Multi Channel Systems (2006) MEA Application Note: Human Embryonic Stem Cell Derived Cardiac Myocytes (hESC-CM). Multi Channel Systems MCS GmbH.Google Scholar
  32. 32.
    Fast, V. G. (2005) Simultaneous optical imaging of membrane potential and intracellular calcium J Electrocardiol 38, 107–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Tritthart, H. A. (2005) Optical techniques for the recording of action potentials. in Practical Methods in Cardiovascular Research (Dhein, S., Mohr, F. W., and Delmar, M., Eds.) pp 215–232, Springer, Berlin.CrossRefGoogle Scholar
  34. 34.
    Ratzlaff, E. H., and Grinvald, A. (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging J Neurosci Methods 36, 127–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Montana, V., Farkas, D. L., and Loew, L. M. (1989) Dual-wavelength ratiometric fluorescence measurements of membrane potential Biochemistry 28, 4536–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Muller, W., Windisch, H., and Tritthart, H. A. (1986) Fluorescent styryl dyes applied as fast optical probes of cardiac action potential Eur Biophys J 14, 103–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Knisley, S. B., Justice, R. K., Kong, W., and Johnson, P. L. (2000) Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts Am J Physiol Heart Circ Physiol 279, H1421–33.PubMedGoogle Scholar
  38. 38.
    Beach, J. M., McGahren, E. D., Xia, J., and Duling, B. R. (1996) Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye Am J Physiol 270, H2216–27.PubMedGoogle Scholar
  39. 39.
    Takahashi, A., Camacho, P., Lechleiter, J. D., and Herman, B. (1999) Measurement of intracellular calcium Physiol Rev 79, 1089–125.PubMedGoogle Scholar
  40. 40.
    Katra, R. P., Pruvot, E., and Laurita, K. R. (2004) Intracellular calcium handling heterogeneities in intact guinea pig hearts Am J Physiol Heart Circ Physiol 286, H648–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Field, M. L., Azzawi, A., Styles, P., Henderson, C., Seymour, A. M., and Radda, G. K. (1994) Intracellular Ca2+ transients in isolated ­perfused rat heart: measurement using the fluorescent indicator Fura-2/AM. Cell Calcium 16, 87–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Multi Channel Systems (2005) Microelectrode Array (MEA) User Manual. Multi Channel Systems MCS GmbH.Google Scholar
  43. 43.
    Potter, S. M., and DeMarse, T. B. (2001) A new approach to neural cell culture for long-term studies J Neurosci Methods 110, 17–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamoto, M., Honjo, H., Niwa, R., and Kodama, I. (1998) Low-frequency extracellular potentials recorded from the sinoatrial node Cardiovasc Res 39, 360–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Fedorov, V. V., Lozinsky, I. T., Sosunov, E. A., Anyukhovsky, E. P., Rosen, M. R., Balke, C. W., and Efimov, I. R. (2007) Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts Heart Rhythm 4, 619–26.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu, J., Biermann, M., Rubart, M., and Zipes, D. P. (1998) Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium J Cardiovasc Electrophysiol 9, 1336–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheng, Y., Mowrey, K., Efimov, I. R., Van Wagoner, D. R., Tchou, P. J., and Mazgalev, T. N. (1997) Effects of 2,3-butanedione monoxime on atrial-atrioventricular nodal conduction in isolated rabbit heart. J Cardiovasc Electrophysiol 8, 790–802.PubMedCrossRefGoogle Scholar
  48. 48.
    Bursac, N., Loo, Y., Leong, K., and Tung, L. (2007) Novel anisotropic engineered cardiac tissues: studies of electrical propagation Biochem Biophys Res Commun 361, 847–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Schaffer, P., Ahammer, H., Muller, W., Koidl, B., and Windisch, H. (1994) Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes Pflugers Arch 426, 548–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Windisch, H., Muller, W., and Tritthart, H. A. (1985) Fluorescence monitoring of rapid changes in membrane potential in heart muscle Biophys J 48, 877–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Boyett, M. R., and Jewell, B. R. (1980) Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart Prog Biophys Mol Biol 36, 1–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Seth Weinberg
    • 1
  • Elizabeth A. Lipke
    • 2
  • Leslie Tung
    • 1
  1. 1.Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations