Skip to main content

Zebrafish Small Molecule Screen in Reprogramming/Cell Fate Modulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 636))

Abstract

Embryonic zebrafish have long been used for lineage-tracing studies. In zebrafish embryos, the cell fate identities can be determined by whole-mount in situ hybridization, or by visualization of live embryos if using fluorescent reporter lines. We use embryonic zebrafish to study the effects of a leukemic oncogene AML1-ETO on modulating hematopoietic cell fate. Induced expression of AML1-ETO is able to efficiently reprogram hematopoietic progenitor cells from erythroid to myeloid cell fate. Using the zebrafish model of AML1-ETO, we performed a chemical screen to identify small molecules that suppress the cell fate switch in the presence of AML1-ETO. The methods discussed herein may be broadly applicable for identifying small molecules that modulate other cell fate decisions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davison, A. J. and Zon, L. I. (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233–7246.

    Article  Google Scholar 

  2. Yeh, J.-R. J., Munson, K. M., Chao, Y. L., Peterson, Q. P., MacRae, C. A., Peterson, R. T. (2008) AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 135, 401–410.

    Article  CAS  PubMed  Google Scholar 

  3. Yeh, J.-R. J., Munson, K. M., Elabgib, K. E., Goldfarb, A. N., Sweetser, D. A., Peterson, R. T. (2009) Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Chem. Biol. 5, 236 –243.

    Google Scholar 

  4. Detrich, H. W., Kieran, M. W., Chan, F. Y., Barone, L. M., Yee, K., Rundstadler, J. A., Pratt, S., Ransom, D., Zon, L. I. (1995) Intraembryonic hematopoietic cell migration during vertebrate development. PNAS 92, 10713–10717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Randall T. Peterson for his advice and support during the development of this project. J.-R. J. Yeh is supported by a Career Development Award (AG031300) from the National Institute of Aging. This work was supported by RO1 CA118498 and the Claflin Distinguished Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Ruey J. Yeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yeh, JR.J., Munson, K.M. (2010). Zebrafish Small Molecule Screen in Reprogramming/Cell Fate Modulation. In: Ding, S. (eds) Cellular Programming and Reprogramming. Methods in Molecular Biology, vol 636. Humana Press. https://doi.org/10.1007/978-1-60761-691-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-691-7_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-690-0

  • Online ISBN: 978-1-60761-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics