Hepatocytes pp 167-179 | Cite as

Hepatic Stem Cells

Part of the Methods in Molecular Biology book series (MIMB, volume 640)


Early studies in hepatocyte turnover and liver regeneration showed that the parenchymal cell, the hepatocyte, was the primary and only cell involved in tissue renewal. However, new studies of liver regeneration, hepatocarcinogenesis, liver transplantation, and various cell lines have shown that a variety of cell types participate in maintaining hepatocyte number and mass and question the dogma of the previous hierarchy of hepatocyte differentiation in vitro and in vivo.

Key words

Hepatocytes hepatic stem cells development stem cell plasticity liver regeneration 


  1. 1.
    Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S. et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  2. 2.
    Frankel, M.S. (2000). In search of stem cell policy. Science 287, 1397.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.PubMedCrossRefGoogle Scholar
  4. 4.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008) Induced pluripotent stem cells generated without viral integration. Science 322, 945–949.PubMedCrossRefGoogle Scholar
  5. 5.
    Cao, F., Drukker, M., Lin, S. et al. (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9, 107–117.PubMedCrossRefGoogle Scholar
  6. 6.
    Weissman, I.L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446.PubMedCrossRefGoogle Scholar
  7. 7.
    Gage, F.H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.PubMedCrossRefGoogle Scholar
  8. 8.
    Potten, C.S. (1998) Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 821–830.PubMedCrossRefGoogle Scholar
  9. 9.
    Watt, F.M. (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 831–837.PubMedCrossRefGoogle Scholar
  10. 10.
    Alison, M. and Sarraf, C. (1998) Hepatic stem cells. J. Hepatol. 29, 676–682.PubMedCrossRefGoogle Scholar
  11. 11.
    Pittenger, M.F., Mackay, A.M., Beck, S.C. et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.PubMedCrossRefGoogle Scholar
  12. 12.
    Gussoni, E., Soneoka, Y., Strickland, C.D. et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.PubMedGoogle Scholar
  13. 13.
    Ferrari, G., Cusella-De Angelis, G., Coletta, M. et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.PubMedCrossRefGoogle Scholar
  14. 14.
    Corbel, S.Y., Lee, A., Yi, L. et al. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528–1532.PubMedCrossRefGoogle Scholar
  15. 15.
    Jackson, K.A., Majka, S.M., Wang, H. et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.PubMedCrossRefGoogle Scholar
  16. 16.
    Orlic, D., Kajstura, J., Chimenti, S. et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Orlic, D., Kajstura, J., Chimenti, S. et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349.PubMedCrossRefGoogle Scholar
  18. 18.
    Asahara, T., Masuda, H., Takahashi, T. et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228.PubMedGoogle Scholar
  19. 19.
    Lin, Y., Weisdorf, D.J., Solovey, A., and Hebbel, R.P. (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Lagasse, E., Connors, H., Al-Dhalimy, M. et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234.PubMedCrossRefGoogle Scholar
  21. 21.
    Petersen, B.E., Bowen, W.C., Patrene, K.D. et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.PubMedCrossRefGoogle Scholar
  22. 22.
    Theise, N.D., Nimmakayalu, M., Gardner, R. et al. (2000) Liver from bone marrow in humans. Hepatology 32, 11–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Krause, D.S., Theise, N.D., Collector, M.I. et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377.PubMedCrossRefGoogle Scholar
  24. 24.
    Borue, X., Lee, S., Grove, J. et al. (2004) Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am. J. Pathol. 165, 1767–1772.PubMedCrossRefGoogle Scholar
  25. 25.
    Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., and McKercher, S.R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.PubMedCrossRefGoogle Scholar
  26. 26.
    Kopen, G.C., Prockop, D.J., and Phinney, D.G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10711–10716.PubMedCrossRefGoogle Scholar
  27. 27.
    Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.PubMedCrossRefGoogle Scholar
  28. 28.
    Weimann, J.M., Johansson, C.B., Trejo, A., and Blau, H.M. (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–966.PubMedCrossRefGoogle Scholar
  29. 29.
    Willenbring, H., Bailey, A.S., Foster, M. et al. (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748.PubMedCrossRefGoogle Scholar
  30. 30.
    Willenbring, H. and Grompe, M. (2004) Delineating the hepatocyte’s hematopoietic fusion partner. Cell Cycle 3, 1489–1491.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, X., Montini, E., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2002) Kinetics of liver repopulation after bone marrow transplantation. Am. J. Pathol. 161, 565–574.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, X., Willenbring, H., Akkari, Y. et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901.PubMedCrossRefGoogle Scholar
  33. 33.
    Camargo, F.D., Finegold, M., and Goodell, M.A. (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest. 113, 1266–1270.PubMedGoogle Scholar
  34. 34.
    Fujino, H., Hiramatsu, H., Tsuchiya, A. et al. (2007) Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J. 21, 3499–3510.PubMedCrossRefGoogle Scholar
  35. 35.
    Faggioli, F., Sacco, M.G., Susani, L., Montagna, C., and Vezzoni, P. (2008) Cell fusion is a physiological process in mouse liver. Hepatology 48, 1655–1664.PubMedCrossRefGoogle Scholar
  36. 36.
    Harris, R.G., Herzog, E.L., Bruscia, E.M., Grove, J.E., Van Arnam, J.S., and Krause, D.S. (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305, 90–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Brittan, M., Braun, K.M., Reynolds, L.E. et al. (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J. Pathol. 205, 1–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Wurmser, A.E., Nakashima, K., Summers, R.G. et al. (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356.PubMedCrossRefGoogle Scholar
  39. 39.
    Jang, Y.Y., Collector, M.I., Baylin, S.B., Diehl, A.M., and Sharkis, S.J. (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat. Cell Biol. 6, 532–539.PubMedCrossRefGoogle Scholar
  40. 40.
    Oh, S.H., Witek, R.P., Bae, S.H. et al. (2007) Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 132, 1077–1087.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang, S., Wang, D., Estrov, Z., Raj, S., Willerson, J.T., and Yeh, E.T. (2004) Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110, 3803–3807.PubMedCrossRefGoogle Scholar
  42. 42.
    Tanabe, Y., Tajima, F., Nakamura, Y. et al. (2004) Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion. Biochem. Biophys. Res. Commun. 324, 711–718.PubMedCrossRefGoogle Scholar
  43. 43.
    Ponlick, V. (1890) Leberresection and Leberreaction. Verh. Dtsch. Ges. Chir. 19, 28.Google Scholar
  44. 44.
    Michalopoulos, G.K. (2007) Liver regeneration. J. Cell Physiol. 213, 286–300.PubMedCrossRefGoogle Scholar
  45. 45.
    Bucher, N.L., Schrock, T.R., and Moolten, F.L. (1969) An experimental view of hepatic regeneration. Johns Hopkins Med. J. 125, 250–257.PubMedGoogle Scholar
  46. 46.
    Fausto, N. (2000) Liver regeneration. J. Hepatol. 32 Suppl 1, 19–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Fausto, N. (1999) Lessons from genetically engineered animal models. V. Knocking out genes to study liver regeneration: present and future. Am. J. Physiol. 277, G917–G921.PubMedGoogle Scholar
  48. 48.
    Fausto, N. (2001) Liver regeneration: from laboratory to clinic. Liver Transplant. 7, 835–844.CrossRefGoogle Scholar
  49. 49.
    Lanier, T.L., Berger, E.K., and Eacho, P.I. (1989) Comparison of 5-bromo-2-deoxyuridine and [3H]thymidine for studies of hepatocellular proliferation in rodents. Carcinogenesis 10, 1341–1343.PubMedCrossRefGoogle Scholar
  50. 50.
    Michalopoulos, G.K. and DeFrances, M.C. (1997) Liver regeneration. Science 276, 60–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Shiojiri, N., Lemire, J.M., and Fausto, N. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 51, 2611–2620.PubMedGoogle Scholar
  52. 52.
    Evarts, R.P., Nagy, P., Marsden, E., and Thorgeirsson, S.S. (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740.PubMedCrossRefGoogle Scholar
  53. 53.
    Evarts, R.P., Nagy, P., Nakatsukasa, H., Marsden, E., and Thorgeirsson, S.S. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 49, 1541–1547.PubMedGoogle Scholar
  54. 54.
    Baumann, U., Crosby, H.A., Ramani, P., Kelly, D.A., and Strain, A.J. (1999) Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology 30, 112–117.PubMedCrossRefGoogle Scholar
  55. 55.
    Roskams, T., De Vos, R., Van Eyken, P., Myazaki, H., Van Damme, B., and Desmet, V. (1998) Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J. Hepatol. 29, 455–463.PubMedCrossRefGoogle Scholar
  56. 56.
    Dorrell, C., Erker, L., Lanxon-Cookson, K.M. et al. (2008) Surface markers for the murine oval cell response. Hepatology 48, 1282–1291.PubMedCrossRefGoogle Scholar
  57. 57.
    Kollet, O., Shivtiel, S., Chen, Y.Q. et al. (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169.PubMedGoogle Scholar
  58. 58.
    Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood 106, 1901–1910.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang, X., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2003) The origin and liver repopulating capacity of murine oval cells. Proc. Natl. Acad. Sci. USA 100 Suppl 1, 11881–11888.PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki, A., Sekiya, S., Onishi, M. et al. (2008) Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48, 1964–1978.PubMedCrossRefGoogle Scholar
  61. 61.
    Jelnes, P., Santoni-Rugiu, E., Rasmussen, M. et al. (2007) Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology 45, 1462–1470.PubMedCrossRefGoogle Scholar
  62. 62.
    Sell, S. (1993) Liver stem cells. Science 260, 1224.PubMedCrossRefGoogle Scholar
  63. 63.
    Lazaro, C.A., Rhim, J.A., Yamada, Y., and Fausto, N. (1998) Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 58, 5514–5522.PubMedGoogle Scholar
  64. 64.
    Sell, S. (1998) Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury. Hepatology 27, 317–331.PubMedCrossRefGoogle Scholar
  65. 65.
    Tee, L.B., Kirilak, Y., Huang, W.H., Smith, P.G., Morgan, R.H., and Yeoh, G.C. (1996) Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinogenesis 17, 251–259.PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplanski, C., Pauley, C.J., Griffiths, T.G., Kawabata, T.T., and Ledwith, B.J. (2000) Differentiation of rat oval cells after activation of peroxisome proliferator-activated receptor alpha43. Cancer Res. 60, 580–587.PubMedGoogle Scholar
  67. 67.
    Knight, B., Yeap, B.B., Yeoh, G.C., and Olynyk, J.K. (2005) Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member gamma, but not alpha or delta. Carcinogenesis 26, 1782–1792.PubMedCrossRefGoogle Scholar
  68. 68.
    Oben, J.A., Roskams, T., Yang, S. et al. (2003) Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38, 664–673.PubMedCrossRefGoogle Scholar
  69. 69.
    Shiota, G., Kunisada, T., Oyama, K. et al. (2000) In vivo transfer of hepatocyte growth factor gene accelerates proliferation of hepatic oval cells in a 2-acetylaminofluorene/partial hepatectomy model in rats. FEBS Lett. 470, 325–330.PubMedCrossRefGoogle Scholar
  70. 70.
    Rountree, C.B., Senadheera, S., Mato, J.M., Crooks, G.M., and Lu, S.C. (2008) Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology 47, 1288–1297.PubMedCrossRefGoogle Scholar
  71. 71.
    Tang, Y., Kitisin, K., Jogunoori, W. et al. (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc. Natl. Acad. Sci. USA 105, 2445–2450.PubMedCrossRefGoogle Scholar
  72. 72.
    Yang, Z.F., Ho, D.W., Ng, M.N. et al. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166.PubMedCrossRefGoogle Scholar
  73. 73.
    Avital, I., Inderbitzin, D., Aoki, T. et al. (2001) Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288, 156–164.PubMedCrossRefGoogle Scholar
  74. 74.
    Azuma, H., Hirose, T., Fujii, H. et al. (2003) Enrichment of hepatic progenitor cells from adult mouse liver. Hepatology 37, 1385–1394.PubMedCrossRefGoogle Scholar
  75. 75.
    Sahin, M.B., Schwartz, R.E., Buckley, S.M. et al. (2008) Isolation and characterization of a novel population of progenitor cells from unmanipulated rat liver. Liver Transplant. 14, 333–345.CrossRefGoogle Scholar
  76. 76.
    Mitaka, T., Mizuguchi, T., Sato, F., Mochizuki, C., and Mochizuki, Y. (1998) Growth and maturation of small hepatocytes. J. Gastroenterol. Hepatol. 13 Suppl, S70–S77.PubMedGoogle Scholar
  77. 77.
    Miyamoto, S., Hirata, K., Sugimoto, S., Harada, K., and Mitaka, T. (2005) Expression of cytochrome P450 enzymes in hepatic organoid reconstructed by rat small hepatocytes. J. Gastroenterol. Hepatol. 20, 865–872.PubMedCrossRefGoogle Scholar
  78. 78.
    Sugimoto, S., Mitaka, T., Ikeda, S. et al. (2002) Morphological changes induced by extracellular matrix are correlated with maturation of rat small hepatocytes. J. Cell Biochem. 87, 16–28.PubMedCrossRefGoogle Scholar
  79. 79.
    Gordon, G.J., Butz, G.M., Grisham, J.W., and Coleman, W.B. (2002) Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation 73, 1236–1243.PubMedCrossRefGoogle Scholar
  80. 80.
    Gordon, G.J., Coleman, W.B., and Grisham, J.W. (2000) Induction of cytochrome P450 enzymes in the livers of rats treated with the pyrrolizidine alkaloid retrorsine. Exp. Mol. Pathol. 69, 17–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Gordon, G.J., Coleman, W.B., Hixson, D.C., and Grisham, J.W. (2000) Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am. J. Pathol. 156, 607–619.PubMedCrossRefGoogle Scholar
  82. 82.
    LaBarge, M.A. and Blau, H.M. (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2001) Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol. 158, 571–579.PubMedCrossRefGoogle Scholar
  84. 84.
    Theise, N.D., Badve, S., Saxena, R. et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240.PubMedCrossRefGoogle Scholar
  85. 85.
    Cotran, R.S. (1999) Pathologic Basis of Disease, 6th ed., W.B. Saunders Company, Philadelphia London.Google Scholar
  86. 86.
    Korbling, M., Katz, R.L., Khanna, A. et al. (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Engl. J. Med. 346, 738–746.PubMedCrossRefGoogle Scholar
  87. 87.
    Avital, I., Inderbitzin, D., Aoki, T. et al. (2001) Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288, 156–164.PubMedCrossRefGoogle Scholar
  88. 88.
    Fiegel, H.C., Lioznov, M.V., Cortes-Dericks, L. et al. (2003) Liver-specific gene expression in cultured human hematopoietic stem cells. Stem Cells 21, 98–104.PubMedCrossRefGoogle Scholar
  89. 89.
    Grompe, M., al-Dhalimy, M., Finegold, M. et al. (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307.PubMedCrossRefGoogle Scholar
  90. 90.
    Grompe, M., Lindstedt, S., al-Dhalimy, M. et al. (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460.PubMedCrossRefGoogle Scholar
  91. 91.
    Vassilopoulos, G., Wang, P.R., and Russell, D.W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologyBrigham and Women’s HospitalBostonUSA
  2. 2.Interdepartementaal StamcelinstituutLeuvenBelgium

Personalised recommendations