Skip to main content

Gramene Database: A Hub for Comparative Plant Genomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 678))

Abstract

The rich collection of known genetic information and the recent completion of rice genome sequencing project provided the cereal plant researchers a useful tool to investigate the roles of genes and genomic organization that contribute to numerous agronomic traits. Gramene (http://www.gramene.org) is a unique database where users are allowed to query and explore the power of genomic colinearity and comparative genomics for genetic and genomic studies on plant genomes. Gramene presents a wholesome perspective by assimilating data from a broad range of publicly available data sources for cereals like rice, sorghum, maize, wild rice, wheat, oats, barley, and other agronomically important crop plants such as poplar and grape, and the model plant Arabidopsis. As part of the process, it preserves the original data, but also reanalyzes for integration into several knowledge domains of maps, markers, genes, proteins, pathways, phenotypes, including Quantitative Trait Loci (QTL) and genetic diversity/natural variation. This allows researchers to use this information resource to decipher the known and predicted interactions between the components of biological systems, and how these interactions regulate plant development. Using examples from rice, this article describes how the database can be helpful to researchers representing an array of knowledge domains ranging from plant biology, plant breeding, molecular biology, genomics, biochemistry, genetics, bioinformatics, and phylogenomics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yu, J., S. Hu, J. Wang, G.K. Wong, S. Li, B. Liu, et al., (2002), A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296(5565): p. 79–92.

    Article  PubMed  CAS  Google Scholar 

  2. IRGSP. (2005), The map-based sequence of the rice genome. Nature, 436: p. 793–800.

    Article  Google Scholar 

  3. DoE-JGI. (2007), Sorghum genome project. Available from: http://www.phytozome.net/sorghum

  4. Bedell, J.A., M.A. Budiman, A. Nunberg, R.W. Citek, D. Robbins, J. Jones, et al., (2005), Sorghum genome sequencing by methylation filtration. PLoS Biol, 3(1): p. e13. Epub 2005 Jan 4.

    Article  PubMed  Google Scholar 

  5. Paterson, A.H., J.E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood, H. Gundlach, et al., (2009), The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229): p. 551–6.

    Article  PubMed  CAS  Google Scholar 

  6. Project, M.G.S. (2007), The Maize Genome Sequencing Project. Available from: http://www.maizesequence.org/overview.html.

  7. Maziesequence.org. (2008), Available from: http://www.maizesequence.org.

  8. DoE-JGI. (2007), Why Sequence Brachypodium? Available from: http://www.jgi.doe.gov/sequencing/why/CSP2007/brachypodium.html.

  9. Brachypodium_Sequencing_Project. (2009), Brachypodium genome, BrachyBase, www.brachybase.org.

  10. Tuskan, G.A., S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, et al., (2006), The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793): p. 1596–604.

    Article  PubMed  CAS  Google Scholar 

  11. Travis, J., (2008), Uncorking the grape genome. Science, 320(5875): p. 475–7.

    Article  PubMed  CAS  Google Scholar 

  12. DoE-JGI. (2009), Soybean genome. Available from: http://www.phytozome.net/soybean.

  13. Town, C.D., (2006), Annotating the genome of Medicago truncatula. Curr Opin Plant Biol, 9(2): p. 122–7.

    Article  PubMed  CAS  Google Scholar 

  14. Cannon, S.B., J.A. Crow, M.L. Heuer, X. Wang, E.K. Cannon, C. Dwan, et al., (2005), Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol, 138(1): p. 38–46.

    Article  PubMed  CAS  Google Scholar 

  15. Bell, C.J., R.A. Dixon, A.D. Farmer, R. Flores, J. Inman, R.A. Gonzales, et al., (2001), The Medicago Genome Initiative: a model legume database. Nucleic Acids Res, 29(1): p. 114–7.

    Article  PubMed  CAS  Google Scholar 

  16. Jung, S., M. Staton, T. Lee, A. Blenda, R. Svancara, A. Abbott, et al., (2008), GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res, 36(Database issue): p. D1034–40.

    PubMed  CAS  Google Scholar 

  17. Tarchini, R., P. Biddle, R. Wineland, S. Tingey, and A. Rafalski, (2000), The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 12(3): p. 381–91.

    PubMed  CAS  Google Scholar 

  18. La Rota, M., R.V. Kantety, J.K. Yu, and M.E. Sorrells, (2005), Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics, 6(1): p. 23.

    Article  PubMed  Google Scholar 

  19. Keller, B. and C. Feuillet, (2000), Colinearity and gene density in grass genomes. Trends Plant Sci, 5(6): p. 246–51.

    Article  PubMed  CAS  Google Scholar 

  20. Jaiswal, P., J. Ni, I. Yap, D. Ware, W. Spooner, K. Youens-Clark, et al., (2006), Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res, 34(Database issue): p. D717–23.

    Article  PubMed  CAS  Google Scholar 

  21. Liang, C., P. Jaiswal, C. Hebbard, S. Avraham, E.S. Buckler, T. Casstevens, et al., (2008), Gramene: a growing plant comparative genomics resource. Nucleic Acids Res, 36(Database issue): p. D947–53. Epub 2007 Nov 4.

    PubMed  CAS  Google Scholar 

  22. Wheeler, D.L., B. Smith-White, V. Chetvernin, S. Resenchuk, S.M. Dombrowski, S.W. Pechous, et al., (2005), Plant genome resources at the national center for biotechnology information. Plant Physiol, 138(3): p. 1280–8.

    Article  PubMed  CAS  Google Scholar 

  23. Wheeler, D.L., T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, D.M. Church, et al., (2005), Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 33(Database issue): p. D39–45.

    Article  PubMed  CAS  Google Scholar 

  24. Dong, Q., S.D. Schlueter, and V. Brendel, (2004), PlantGDB, plant genome database and analysis tools. Nucleic Acids Res, 32(Database issue): p. D354–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, Y., J. Tsai, S. Sunkara, S. Karamycheva, G. Pertea, R. Sultana, et al., (2005), The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res, 33(Database issue): p. D71–4.

    Article  PubMed  CAS  Google Scholar 

  26. Sherry, S.T., M.H. Ward, M. Kholodov, J. Baker, L. Phan, E.M. Smigielski, et al., (2001), dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1): p. 308–11.

    Article  PubMed  CAS  Google Scholar 

  27. Apweiler, R., A. Bairoch, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, et al., (2004), UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 32(Database issue): p. D115–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ni, J., A. Pujar, K. Youens-Clark, I. Yap, P. Jaiswal, I. Tecle, et al., (2009), Gramene QTL database: development, content and applications. Database Vol. 2009:bap005; doi:10.1093/database/bap005.

    Google Scholar 

  29. Kent, W.J., (2002), BLAT – the BLAST-like alignment tool. Genome Res, 12(4): p. 656–64.

    PubMed  CAS  Google Scholar 

  30. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, (1990), Basic local alignment search tool. J Mol Biol, 215(3): p. 403–10.

    PubMed  CAS  Google Scholar 

  31. Potter, S.C., L. Clarke, V. Curwen, S. Keenan, E. Mongin, S.M. Searle, et al., (2004), The Ensembl analysis pipeline. Genome Res, 14(5): p. 934–41.

    Article  PubMed  CAS  Google Scholar 

  32. Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch, (2001), Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 11(8): p. 1441–52.

    Article  PubMed  CAS  Google Scholar 

  33. McCouch, S.R., L. Teytelman, Y. Xu, K.B. Lobos, K. Clare, M. Walton, et al., (2002), Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 9(6): p. 199–207.

    Article  PubMed  CAS  Google Scholar 

  34. Yuan, Q., S. Ouyang, A. Wang, W. Zhu, R. Maiti, H. Lin, et al., (2005), The institute for genomic research Osa1 rice genome annotation database. Plant Physiol, 138(1): p. 18–26.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao, W., J. Wang, X. He, X. Huang, Y. Jiao, M. Dai, et al., (2004), BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res, 32(Database issue): p. D377–82.

    Article  PubMed  CAS  Google Scholar 

  36. Wing, R.A., J.S. Ammiraju, M. Luo, H. Kim, Y. Yu, D. Kudrna, et al., (2005), The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol, 59(1): p. 53–62.

    Article  PubMed  CAS  Google Scholar 

  37. maizesequence.org. (2009), Release 4a.53: Summary of intentions. Available from: http://maizesequence.org/summary_of_intentions.html.

  38. Kurata, N. and Y. Yamazaki, (2006), Oryzabase. An integrated biological and genome information database for rice. Plant Physiol, 140(1): p. 12–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yamazaki, Y. and P. Jaiswal, (2005), Biological ontologies in rice databases. An introduction to the activities in Gramene and Oryzabase. Plant Cell Physiol, 46(1): p. 63–8. Epub 2005 Jan 19.

    Article  PubMed  CAS  Google Scholar 

  40. Harris, M.A., J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, et al., (2004), The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32(Database issue): p. D258–61.

    PubMed  CAS  Google Scholar 

  41. Pujar, A., P. Jaiswal, E.A. Kellogg, K. Ilic, L. Vincent, S. Avraham, et al., (2006), Whole plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiol, 142: p. 414–428.

    Google Scholar 

  42. Jaiswal, P., S. Avraham, K. Ilic, E.A. Kellogg, A. Pujar, L. Reiser, et al., (2005), Plant sOntology (PO): a controlled vocabulary of plant structures and growth stages. Comp Funct Genomics, 6(7–8): p. 388–97.

    Article  PubMed  CAS  Google Scholar 

  43. Ilic, K., E.A. Kellogg, P. Jaiswal, F. Zapata, P.F. Stevens, L.P. Vincent, et al., (2007), The plant structure ontology, a unified vocabulary of anatomy and morphology of a flowering plant. Plant Physiol, 143(2): p. 587–99.

    Article  PubMed  CAS  Google Scholar 

  44. Jaiswal, P., D. Ware, J. Ni, K. Chang, W. Zhao, S. Schmidt, et al., (2002), Gramene: development and integration of trait and gene ontologies for rice. Comp Funct Genomics, 3(2): p. 132–136.

    Article  PubMed  CAS  Google Scholar 

  45. Wheeler, D.L., T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, V. Chetvernin, et al., (2007), Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 35(Database issue): p. D5–12.

    Article  PubMed  CAS  Google Scholar 

  46. Canaran, P., L. Stein, and D. Ware, (2006), Look-Align: an interactive web-based multiple sequence alignment viewer with polymorphism analysis support. Bioinformatics, 22(7): p. 885–6. Epub 2006 Feb 10.

    Article  PubMed  CAS  Google Scholar 

  47. Dvorak, J., J.A. Anderson, O.D. Anderson, M.T. Clegg, J. Dubcovsky, B. Gill, et al., (2009), Haplotype polymorphism in polyploid wheats and their diploid ancestors, Available from: http://wheat.pw.usda.gov/SNP/project.html.

  48. The Sorghum Diversity Database. (2009), The Sorghum Diversity Database. Available from: http://sorghumdiversity.org/sorghum/database.html.

Download references

Acknowledgments

This work was initially supported (2001–2004) by the USDA Initiative for Future Agriculture and Food Systems (IFAFS) (grant no. 00-52100-9622) and USDA-Agricultural Research Service specific cooperative agreement (grant no. 58-1907-0-041). For the years 2004–current, this work is supported by National Science Foundation (NSF) awards #0321685 and 0703908. We are thankful to our project team members and numerous collaborators and data contributors for help in curation, sharing the datasets and tools. For a full list of our collaborators, please visit http://www.gramene.org/collaborators.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jaiswal, P. (2011). Gramene Database: A Hub for Comparative Plant Genomics. In: Pereira, A. (eds) Plant Reverse Genetics. Methods in Molecular Biology, vol 678. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-682-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-682-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-681-8

  • Online ISBN: 978-1-60761-682-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics