Skip to main content

Rapid Sequence Scanning Mutagenesis Using In Silico Oligo Design and the Megaprimer PCR of Whole Plasmid Method (MegaWHOP)

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

A wide variety of random- and site-directed mutagenesis techniques have been developed to investigate the structure–function relationship in proteins and intergenic regions like promoter sequences. Similar techniques can be employed to optimize protein properties like enantioselectivity, substrate specificity, and stability in a directed evolution approach. Due to the tremendous genetic diversity that is created by common random-mutagenesis methods, directed evolution techniques usually require the time-consuming and cumbersome screening of large numbers of variants. A gene-scanning saturation-mutagenesis approach represents one efficient way to limit the screening effort by reducing the created genetic diversity. In structure/function studies often a similar method, e.g., alanine- or arginine-scanning mutagenesis, is used to probe the role of specific amino acids in a protein. Here, we present a standardized mutagenesis strategy that can speed up the process of scanning whole proteins for structure/function studies and, furthermore, allows for the fast and efficient generation of gene-scanning saturation-mutagenesis libraries to be used in the directed evolution of enzyme functions and properties. The described method uses automated computer-assisted oligonucleotide design, and a two-step PCR-mutagenesis protocol to amplify site-specifically mutated circular plasmids that can be directly transformed in Escherichia coli expression strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valeva A, Siegel I, Wylenzek M et al (2008) Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation. Biol Chem 389:1201–1207

    Article  PubMed  CAS  Google Scholar 

  2. Hosaka Y, Iwata M, Kamiya N et al (2007) Mutational analysis of block and facilitation of HERG current by a class III anti-arrhythmic agent, nifekalant. Channels (Austin) 1:198–208

    Google Scholar 

  3. Shao Y, Feldman-Cohen LS, Osuna R (2008) Functional characterization of the Escherichia coli Fis-DNA binding sequence. J Mol Biol 376:771–785

    Article  PubMed  CAS  Google Scholar 

  4. Toloue MM, Woolwine Y, Karcz JA, Kasperek EM, Nicholson BJ, Skerrett IM (2008) Site-directed mutagenesis reveals putative regions of protein interaction within the transmembrane domains of connexins. Cell Commun Adhes 15:95–105

    Article  PubMed  CAS  Google Scholar 

  5. Sen J, Jacobs A, Caffrey M (2008) Role of the HIV gp120 conserved domain 5 in processing and viral entry. Biochemistry 47:7788–7795

    Article  PubMed  CAS  Google Scholar 

  6. Weis R, Gaisberger R, Gruber K, Glieder A (2007) Serine scanning: a tool to prove the consequences of N-glycosylation of proteins. J Biotechnol 129:50–61

    Article  PubMed  CAS  Google Scholar 

  7. Zupnick A, Prives C (2006) Mutational analysis of the p53 core domain L1 loop. J Biol Chem 281:20464–20473

    Article  PubMed  CAS  Google Scholar 

  8. Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271–288

    Article  PubMed  CAS  Google Scholar 

  9. Brissos V, Eggert T, Cabral JM, Jaeger KE (2008) Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Eng Des Sel 21:387–393

    Article  PubMed  CAS  Google Scholar 

  10. Funke SA, Otte N, Eggert T, Bocola M, Jaeger KE, Thiel W (2005) Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein Eng Des Sel 18:509–514

    Article  PubMed  CAS  Google Scholar 

  11. Eggert T, Funke SA, Andexer JN, Reetz MT, Jaeger KE (2009) Evolution of Enantioselective Bacillus subtilis Lipase. In: Lutz S, Bornscheuer UT (eds) Protein engineering handbook. Wiley-VCH, Weinheim, pp 441–451

    Google Scholar 

  12. Barettino D, Feigenbutz M, Valcarcel R, Stunnenberg HG (1994) Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res 22:541–542

    Article  PubMed  CAS  Google Scholar 

  13. Miyazaki K, Takenouchi M (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 33:1033–1038

    PubMed  CAS  Google Scholar 

  14. Krauss U, Eggert T (2005) insilico.mutagenesis: a primer selection tool designed for sequence scanning applications used in directed evolution experiments. Biotechniques 39:679–682

    Article  PubMed  CAS  Google Scholar 

  15. Lowe T, Sharefkin J, Yang SQ, Dieffenbach CW (1990) A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Res 18:1757–1761

    Article  PubMed  CAS  Google Scholar 

  16. Ling MM, Robinson BH (1997) Approaches to DNA mutagenesis: an overview. Anal Biochem 254:157–178

    Article  PubMed  CAS  Google Scholar 

  17. Sambrook J, Russell D (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  18. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750

    Article  PubMed  CAS  Google Scholar 

  19. Allawi HT, SantaLucia J Jr (1997) Thermodyna-mics and NMR of internal G.T mismatches in DNA. Biochemistry 36:10581–10594

    Article  PubMed  CAS  Google Scholar 

  20. Bichet A, Bureik M, Lenz N, Bernhardt R (2004) The “Bringer” strategy: a very fast and highly efficient method for construction of mutant libraries by error-prone polymerase chain reaction of ring-closed plasmids. Appl Biochem Biotechnol 117:115–122

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Eggert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krauss, U., Jaeger, KE., Eggert, T. (2010). Rapid Sequence Scanning Mutagenesis Using In Silico Oligo Design and the Megaprimer PCR of Whole Plasmid Method (MegaWHOP). In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics