Northern Blotting Techniques for Small RNAs

  • Todd Blevins
Part of the Methods in Molecular Biology™ book series (MIMB, volume 631)


In eukaryotes, RNA silencing encompasses a range of biochemical processes mediated by ∼20–25 nt small RNAs (smRNAs). This chapter describes northern blot hybridization techniques optimized for detection of such smRNAs, whether extracted from plant or animal tissues. The basic protocol is described, and control blots illustrate the detection specificity and sensitivity of this method using DNA oligonucleotide probes. Known endogenous smRNAs are analyzed in samples prepared from several model plant species, including Arabidopsis thaliana, Nicotiana benthamiana, Oryza sativa, Zea mays, and Physcomitrella patens, as well as the animals Drosophila melanogaster and Mus musculus. Finally, the usefulness of northern blotting in dissecting smRNA biogenesis is shown for the particular case of DNA virus infection.

Key words

RNA silencing Northern blot RNA hybridization Small RNA siRNA miRNA 



Many thanks to Azeddine Si-Ammour and Hanspeter Schöb for refining techniques described here, and to Frederick Meins, Jr., and Craig Pikaard for providing support and facilities for experiments shown in this chapter. Thanks to Mikhail Pooggin, Thomas Hohn, and Dominique Robertson for generating materials and ideas behind the viral experiments. Franck Vazquez, Mikhail Pooggin, and Andrzej Wierzbicki provided critical comments on the manuscript. Mike Dyer cared for leafy plants, while Pierre-François Perroud provided moss tissue. Kathryn Huisinga supplied Drosophila embryos. Tatiana Simon and Luciano Marpegan provided mouse liver. This work was supported by a Friedrich Miescher Institute student fellowship, and postdoctoral fellowships from the Swiss National Foundation and Novartis Foundation.


  1. 1.
    Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  2. 2.
    Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  3. 3.
    Southern E (2006) Southern blotting. Nat Protoc 1:518–525CrossRefPubMedGoogle Scholar
  4. 4.
    Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 74:5350–5354CrossRefPubMedGoogle Scholar
  5. 5.
    Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205CrossRefPubMedGoogle Scholar
  6. 6.
    Brown T, Mackey K, Du T (2004) Analysis of RNA by northern and slot blot hybridization. Curr Protoc Mol Biol  Chapter 4: Unit 4 9
  7. 7.
    Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefPubMedGoogle Scholar
  8. 8.
    Hutvagner G, Mlynarova L, Nap JP (2000) Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco. RNA 6:1445–1454CrossRefPubMedGoogle Scholar
  9. 9.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626CrossRefPubMedGoogle Scholar
  10. 10.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862CrossRefPubMedGoogle Scholar
  11. 11.
    Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619CrossRefPubMedGoogle Scholar
  12. 12.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMedGoogle Scholar
  13. 13.
    Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736CrossRefPubMedGoogle Scholar
  14. 14.
    Parker JS, Barford D (2006) Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem Sci 31:622–630CrossRefPubMedGoogle Scholar
  15. 15.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32CrossRefPubMedGoogle Scholar
  16. 16.
    Vaucheret H (2008) Plant ARGONAUTE. Trends Plant Sci 13:350–358CrossRefPubMedGoogle Scholar
  17. 17.
    Meins F Jr, Si-Ammour A, Blevins T (2005) RNA silencing systems and their relevance to plant development. Annu Rev Cell Dev Biol 21:297–318CrossRefPubMedGoogle Scholar
  18. 18.
    Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896CrossRefPubMedGoogle Scholar
  19. 19.
    Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363CrossRefPubMedGoogle Scholar
  20. 20.
    Grosshans H, Slack FJ (2002) Micro-RNAs: small is plentiful. J Cell Biol 156:17–21CrossRefPubMedGoogle Scholar
  21. 21.
    Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468CrossRefPubMedGoogle Scholar
  22. 22.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  23. 23.
    Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779:725–734PubMedGoogle Scholar
  24. 24.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefPubMedGoogle Scholar
  25. 25.
    Kutter C, Schob H, Stadler M, Meins F Jr, Si-Ammour A (2007) MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19:2417–2429CrossRefPubMedGoogle Scholar
  26. 26.
    Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425CrossRefPubMedGoogle Scholar
  27. 27.
    Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201CrossRefPubMedGoogle Scholar
  28. 28.
    Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35CrossRefPubMedGoogle Scholar
  29. 29.
    Pikaard CS (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71:473–480CrossRefPubMedGoogle Scholar
  30. 30.
    Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424CrossRefPubMedGoogle Scholar
  31. 31.
    Meins F Jr (1996) Epigenetic modifications and gene silencing in plants. In: Russo V, Martienssen R, Riggs A (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 415–442Google Scholar
  32. 32.
    Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16:495–500CrossRefPubMedGoogle Scholar
  33. 33.
    Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7207–7221CrossRefPubMedGoogle Scholar
  34. 34.
    Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657CrossRefPubMedGoogle Scholar
  35. 35.
    Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994CrossRefPubMedGoogle Scholar
  36. 36.
    Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS et al (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246CrossRefPubMedGoogle Scholar
  37. 37.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRefPubMedGoogle Scholar
  38. 38.
    Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extr­action: twenty-something years on. Nat Protoc 1:581–585CrossRefPubMedGoogle Scholar
  39. 39.
    Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3:1077–1084CrossRefPubMedGoogle Scholar
  40. 40.
    Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedGoogle Scholar
  41. 41.
    Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622CrossRefPubMedGoogle Scholar
  42. 42.
    Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A et al (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92CrossRefPubMedGoogle Scholar
  43. 43.
    Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196CrossRefPubMedGoogle Scholar
  44. 44.
    Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22:1597–1606CrossRefPubMedGoogle Scholar
  45. 45.
    Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920CrossRefPubMedGoogle Scholar
  46. 46.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89CrossRefPubMedGoogle Scholar
  47. 47.
    Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Todd Blevins
    • 1
  1. 1.Pikaard Laboratory, Biology DepartmentWashington UniversityWashingtonUSA

Personalised recommendations