Metaanalysis of ChIP-chip Data

  • Julia Engelhorn
  • Franziska Turck
Part of the Methods in Molecular Biology™ book series (MIMB, volume 631)


Genome-wide analysis of histone modifications via ChIP-chip (chromatin immunoprecipitation followed by whole genome tiling array hybridization) may generate lists of up to several thousand potential target genes. In the case of the model organism Arabidopsis thaliana, several databases are available to alleviate further characterization and classification of genomic data sets. The term metaanalysis has been coined for this type of multidatabase comparison. In this chapter, we describe open source software and web tools that perform transcriptional and functional analysis of target genes. Sources of transcription data and clustering tools to subdivide genes according to their expression pattern are described. The user is guided through all necessary steps, including data download and formatting. In addition, the Gene Ontology (GO) vocabulary and methods to uncover over- or underrepresented functions among target genes are introduced. Genomic targets of the histone H3K27me3 modification are presented as a case study to demonstrate that metaanalysis can uncover novel functions that were hidden in genomic data sets.

Key words

Metaanalysis AtGenExpress Hierarchical clustering K-means clustering Gene ontology Functional enrichment analysis 



We thank Drs. Seth Davis and Anika Jöcker for critical reading of the manuscript.


  1. 1.
    Clark JI, Brooksbank C, Lomax J (2005) It’s all GO for plant scientists. Plant Physiol 138:1268–1279CrossRefPubMedGoogle Scholar
  2. 2.
    Coulibaly I, Page GP (2008) Bioinformatic tools for inferring functional information from plant microarray data II: analysis beyond single gene. Int J Plant Genomics 2008:893941PubMedGoogle Scholar
  3. 3.
    Khatri P, Draghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595CrossRefPubMedGoogle Scholar
  4. 4.
    Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23:401–407CrossRefPubMedGoogle Scholar
  5. 5.
    Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  6. 6.
    Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163CrossRefPubMedGoogle Scholar
  7. 7.
    Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718CrossRefPubMedGoogle Scholar
  8. 8.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208CrossRefPubMedGoogle Scholar
  9. 9.
    Montaner D, Tarraga J, Huerta-Cepas J, Burguet J, Vaquerizas JM, Conde L et al (2006) Next station in microarray data analysis: GEPAS. Nucleic Acids Res 34:W486-W491CrossRefPubMedGoogle Scholar
  10. 10.
    de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454CrossRefPubMedGoogle Scholar
  11. 11.
    Provart NJ, Zhu T (2003) A browser-based functional classification superviewer for Arabidopsis genomics. Curr Comput Mol Biol 2003:271–272Google Scholar
  12. 12.
    Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, Montaner D et al (2007) FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res 35:W91-W96CrossRefPubMedGoogle Scholar
  13. 13.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1168–1188Google Scholar
  14. 14.
    Rhee SY, Wood V, Dolinski K, Draghici S (2008) Use and misuse of the gene ontology annotations. Nat Rev Genet 9:509–515CrossRefPubMedGoogle Scholar
  15. 15.
    Jocker A, Hoffmann F, Groscurth A, Schoof H (2008) Protein function prediction and annotation in an integrated environment powered by web services (AFAWE). Bioinformatics 24:2393–2394CrossRefPubMedGoogle Scholar
  16. 16.
    Engelhardt BE, Jordan MI, Muratore KE, Brenner SE (2005) Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol 1:e45CrossRefPubMedGoogle Scholar
  17. 17.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRefPubMedGoogle Scholar
  18. 18.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449CrossRefPubMedGoogle Scholar
  19. 19.
    Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36:W358-W363CrossRefPubMedGoogle Scholar
  20. 20.
    Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM et al (2004) GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou X, Su Z (2007) EasyGO: Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 8:246CrossRefPubMedGoogle Scholar
  22. 22.
    Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464–1465CrossRefPubMedGoogle Scholar
  23. 23.
    Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A (2007) GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 8:R3CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Julia Engelhorn
    • 1
  • Franziska Turck
    • 1
  1. 1.Max Planck Institute for Plant Breeding ResearchKölnGermany

Personalised recommendations