Skip to main content

Polymeric Micelles: Polyethylene Glycol-Phosphatidylethanolamine (PEG-PE)-Based Micelles as an Example

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 624))

Abstract

One of the renowned nanosized pharmaceutical carriers for delivery of poorly soluble drugs, especially, in cancer, is micelles, which are self-assembled colloidal particles with a hydrophobic core and hydrophilic shell. Among the micelle-forming compounds, micelles made of polyethylene glycol-phosphatidylethanolamine (PEG-PE) have gained more attention due to some attractive properties such as good stability, longevity, and ability to accumulate in the areas with an abnormal vasculature via the enhanced permeability and retention effect (into the areas with leaky vasculature, such as tumors). Additionally these micelles can be made “targeted” by attaching specific targeting ligand molecules to the micelle surface or can be comprised of stimuli-responsive amphiphilic block copolymers. Addition of second component such as surfactant or another hydrophobic material to the main micelle forming material further improves the solubilizing capacity of micelles without compromising their stability. Micelles carrying various contrast agents may become the imaging agents of choice in different imaging modalities. Here, we have discussed various protocols for preparation and evaluation of PEG-PE-based micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torchilin, V. P. (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73, 137–172.

    Article  PubMed  CAS  Google Scholar 

  2. Torchilin, V. P. (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24, 1–16.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, A. (Ed.) (1993) Physical Pharmacy, Lippincott, Williams and Wilkins, Philadelphia.

    Google Scholar 

  4. Kwon, G. S. and Okano, T. (1999) Soluble self-assembled block copolymers for drug delivery. Pharm Res 16, 597–600.

    Article  PubMed  CAS  Google Scholar 

  5. Lin, S. Y. and Kawashima, Y. (1985) The influence of three poly(oxyethylene)poly(oxypropylene) surface-active block copolymers on the solubility behavior of indomethacin. Pharm Acta Helv 60, 339–344.

    PubMed  CAS  Google Scholar 

  6. Lin, S. Y. and Kawashima, Y. (1987) Pluronic surfactants affecting diazepam solubility, compatibility, and adsorption from i.v. admixture solutions. J Parenter Sci Technol 41, 83–87.

    PubMed  CAS  Google Scholar 

  7. Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y. (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82, 189–212.

    Article  PubMed  CAS  Google Scholar 

  8. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271–284.

    Article  PubMed  CAS  Google Scholar 

  9. Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., Kataoka, K., and Inoue, S. (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50, 1693–1700.

    PubMed  CAS  Google Scholar 

  10. Jones, M. and Leroux, J. (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48, 101–111.

    Article  PubMed  CAS  Google Scholar 

  11. Chung, J. E., Yokoyama, M., Yamato, M., Aoyagi, T., Sakurai, Y., and Okano, T. (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 62, 115–127.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, W. -Y., Su, C. -K., Patrickios, C. S., Hertler, W. R., and Hatton, T. A. (1995) Effect of block size and sequence on the micellization of ABC triblock methacrylic acid polyampholytes. Macromolecules 28, 8604–8611.

    Article  CAS  Google Scholar 

  13. Kawano, K., Watanabe, M., Yamamoto, T., Yokoyama, M., Opanasopit, P., Okano, T., and Maitani, Y. (2006) Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release 112, 329–332.

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe, M., Kawano, K., Yokoyama, M., Opanasopit, P., Okano, T., and Maitani, Y. (2006) Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int J Pharm 308, 183–189.

    Article  PubMed  CAS  Google Scholar 

  15. Kataoka, K., Matsumoto, T., Yokoyama, M., Okano, T., Sakurai, Y., Fukushima, S., Okamoto, K., and Kwon, G. S. (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64, 143–153.

    Article  PubMed  CAS  Google Scholar 

  16. Lavasanifar, A., Samuel, J., and Kwon, G. S. (2002) Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54, 169–190.

    Article  PubMed  CAS  Google Scholar 

  17. Pierri, E. and Avgoustakis, K. (2005) Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J Biomed Mater Res A 75, 639–647.

    PubMed  CAS  Google Scholar 

  18. Savic, R., Azzam, T., Eisenberg, A., and Maysinger, D. (2006) Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 22, 3570–3578.

    Article  PubMed  CAS  Google Scholar 

  19. Forrest, M. L., Won, C. Y., Malick, A. W., and Kwon, G. S. (2006) In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J Control Release 110, 370–377.

    Article  PubMed  CAS  Google Scholar 

  20. Inoue, T., Chen, G., Nakamae, K., and Hoffman, A. S. (1998) An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J Control Release 51, 221–229.

    Article  PubMed  CAS  Google Scholar 

  21. Yokoyama, M., Kwon, G. S., Okano, T., Sakurai, Y., Seto, T., and Kataoka, K. (1992) Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem 3, 295–301.

    Article  PubMed  CAS  Google Scholar 

  22. Lukyanov, A. N. and Torchilin, V. P. (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56, 1273–1289.

    Article  PubMed  CAS  Google Scholar 

  23. Gao, Z., Lukyanov, A. N., Chakilam, A. R., and Torchilin, V. P. (2003) PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target 11, 87–92.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, W. J., Juang, L. W., and Lin, C. C. (2003) Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20, 668–673.

    Article  PubMed  CAS  Google Scholar 

  25. Cheon Lee, S., Kim, C., Chan Kwon, I., Chung, H., and Young Jeong, S. (2003) Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J Control Release 89, 437–446.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, G. B., Quan, D., Liao, K., and Wang, H. (2006) Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm 3, 152–160.

    Article  PubMed  CAS  Google Scholar 

  27. Ambade, A. V., Savariar, E. N., and Thayumanavan, S. (2005) Dendrimeric micelles for controlled drug release and targeted delivery. Mol Pharm 2, 264–272.

    Article  PubMed  CAS  Google Scholar 

  28. Prompruk, K., Govender, T., Zhang, S., Xiong, C. D., and Stolnik, S. (2005) Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int J Pharm 297, 242–253.

    PubMed  CAS  Google Scholar 

  29. Djordjevic, J., Barch, M., and Uhrich, K. E. (2005) Polymeric micelles based on amphiphilic scorpion-like macromolecules: novel carriers for water-insoluble drugs. Pharm Res 22, 24–32.

    Article  PubMed  CAS  Google Scholar 

  30. Arimura, H., Ohya, Y., and Ouchi, T. (2005) Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer. Biomacromolecules 6, 720–725.

    Article  PubMed  CAS  Google Scholar 

  31. Venne, A., Li, S., Mandeville, R., Kabanov, A., and Alakhov, V. (1996) Hypersensitizing effect of Pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 56, 3626–3629.

    PubMed  CAS  Google Scholar 

  32. Kabanov, A. V., Chekhonin, V. P., Alakhov, V., Batrakova, E. V., Lebedev, A. S., Melik-Nubarov, N. S., Arzhakov, S. A., Levashov, A. V., Morozov, G. V., Severin, E. S., et al. (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 258, 343–345.

    Article  PubMed  CAS  Google Scholar 

  33. Slepnev, V. I., Kuznetsova, L. E., Gubin, A. N., Batrakova, E. V., Alakhov, V., and Kabanov, A. V. (1992) Micelles of poly(oxyethylene)-poly(oxypropylene) block copolymer (Pluronic) as a tool for low-molecular compound delivery into a cell: phosphorylation of intracellular proteins with micelle incorporated [gamma-32P]ATP. Biochem Int 26, 587–595.

    PubMed  CAS  Google Scholar 

  34. Allen, C., Yu, Y., Maysinger, D., and Eisenberg, A. (1998) Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem 9, 564–572.

    Article  PubMed  CAS  Google Scholar 

  35. Shin, I. G., Kim, S. Y., Lee, Y. M., Cho, C. S., and Sung, Y. K. (1998) Methoxy poly(ethylene glycol)/epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization. J Control Release 51, 1–11.

    Article  PubMed  CAS  Google Scholar 

  36. Chung, J. E., Yokoyama, M., Aoyagi, T., Sakurai, Y., and Okano, T. (1998) Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 53, 119–130.

    Article  PubMed  CAS  Google Scholar 

  37. Jeong, Y. I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., Sung, Y. K., Akaike, T., and Cho, C. S. (1998) Clonazepam release from core-shell type nanoparticles in vitro. J Control Release 51, 169–178.

    Article  PubMed  CAS  Google Scholar 

  38. Kwon, G. S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K. (1993) Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res 10, 970–974.

    Article  PubMed  CAS  Google Scholar 

  39. La, S. B., Okano, T., and Kataoka, K. (1996) Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 85, 85–90.

    Article  PubMed  CAS  Google Scholar 

  40. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., and Okano, T. (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 50, 79–92.

    Article  PubMed  CAS  Google Scholar 

  41. Yokoyama, M., Satoh, A., Sakurai, Y., Okano, T., Matsumura, Y., Kakizoe, T., and Kataoka, K. (1998) Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 55, 219–229.

    Article  PubMed  CAS  Google Scholar 

  42. Yu, B. G., Okano, T., Kataoka, K., and Kwon, G. (1998) Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release 53, 131–136.

    Article  PubMed  CAS  Google Scholar 

  43. Katayose, S. and Kataoka, K. (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem 8, 702–707.

    Article  PubMed  CAS  Google Scholar 

  44. Katayose, S. and Kataoka, K. (1998) Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J Pharm Sci 87, 160–163.

    Article  PubMed  CAS  Google Scholar 

  45. Weissig, V., Lizano, C., and Torchilin, V. P. (1998) Micellar delivery system for dequalinium – a lipophilic cationic drug with anticarcinoma activity. J Liposome Res 8, 391–400.

    Article  Google Scholar 

  46. Weissig, V., Whiteman, K. R., and Torchilin, V. P. (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 15, 1552–1556.

    Article  PubMed  CAS  Google Scholar 

  47. Li, M., Chrastina, A., Levchenko, T., and Torchilin, V. P. (2005) Micelles from poly(ethylene glycol)-phosphatidyl ethanolamine conjugates (PEG–PE) as pharmaceutical nanocarriers for poorly soluble drug camptothecin. J Biomed Nanotechnol 1, 190–195.

    Article  CAS  Google Scholar 

  48. Gao, Z., Lukyanov, A. N., Singhal, A., and Torchilin, V. P. (2002) Diacyl polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Letters 2, 979–982.

    Article  CAS  Google Scholar 

  49. Wang, J., Mongayt, D. A., Lukyanov, A. N., Levchenko, T. S., and Torchilin, V. P. (2004) Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int J Pharm 272, 129–135.

    Article  PubMed  CAS  Google Scholar 

  50. Ramaswamy, M., Zhang, X., Burt, H. M., and Wasan, K. M. (1997) Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J Pharm Sci 86, 460–464.

    Article  PubMed  CAS  Google Scholar 

  51. Hagan, S. A., Coombes, A. G. A., Garnett, M. C., Dunn, S. C., Davies, M. C., Illum, L. L., and Davis, S. S. (1996) Polylactide-poly-(ethylene glycol) copolymers as drug delivery systems, 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153–2161.

    Article  CAS  Google Scholar 

  52. Benahmed, A., Ranger, M., and Leroux, J. C. (2001) Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm Res 18, 323–328.

    Article  PubMed  CAS  Google Scholar 

  53. Dufresne, M. H., Garrec, D. L., Sant, V., Leroux, J. C., and Ranger, M. (2004) Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery. Int J Pharm 277, 81–90.

    Article  PubMed  CAS  Google Scholar 

  54. Lee, E. S., Na, K., and Bae, Y. H. (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91, 103–113.

    Article  PubMed  CAS  Google Scholar 

  55. Weiping, S., Changqing, Y., Yanjing, C., Zhiguo, Z., and Xiangzheng, K. (2006) Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin. Colloids Surf B Biointerfaces 48, 13–16.

    Article  PubMed  CAS  Google Scholar 

  56. Lukyanov, A. N., Gao, Z., Mazzola, L., and Torchilin, V. P. (2002) Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm Res 19, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  57. Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K. (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95, 4607–4612.

    Article  PubMed  CAS  Google Scholar 

  58. Parr, M. J., Masin, D., Cullis, P. R., and Bally, M. B. (1997) Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol Exp Ther 280, 1319–1327.

    PubMed  CAS  Google Scholar 

  59. Torchilin, V. P., Lukyanov, A. N., Gao, Z., and Papahadjopoulos-Sternberg, B. (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100, 6039–6044.

    Article  PubMed  CAS  Google Scholar 

  60. Lukyanov, A. N., Hartner, W. C., and Torchilin, V. P. (2004) Increased accumulation of PEG–PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94, 187–193.

    Article  PubMed  CAS  Google Scholar 

  61. Li, L. and Tan, Y. B. (2008) Preparation and properties of mixed micelles made of Pluronic polymer and PEG–PE. J Colloid Interface Sci 317, 326–331.

    Article  PubMed  CAS  Google Scholar 

  62. Dabholkar, R. D., Sawant, R. M., Mongayt, D. A., Devarajan, P. V., and Torchilin, V. P. (2006) Polyethylene glycol-phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm 315, 148–157.

    Article  PubMed  CAS  Google Scholar 

  63. Sawant, R. R., Sawant, R. M., and Torchilin, V. P. (2008) Mixed PEG–PE/vitamin E tumor-targeted immunomicelles as carriers for poorly soluble anti-cancer drugs: improved drug solubilization and enhanced in vitro cytotoxicity. Eur J Pharm Biopharm 70, 51–57.

    Article  PubMed  CAS  Google Scholar 

  64. Skidan, I., Dholakia, P., and Torchilin, V. (2008) Photodynamic therapy of experimental B-16 melanoma in mice with tumor-targeted 5,10,15,20-tetraphenylporphin-loaded PEG–PE micelles. J Drug Target 16, 486–493.

    Article  PubMed  CAS  Google Scholar 

  65. Roby, A., Erdogan, S., and Torchilin, V. P. (2006) Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG–PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm 62, 235–240.

    Article  PubMed  CAS  Google Scholar 

  66. Torchilin, V. P., Levchenko, T. S., Lukyanov, A. N., Khaw, B. A., Klibanov, A. L., Rammohan, R., Samokhin, G. P., and Whiteman, K. R. (2001) p-Nitrophenylcarbonyl-PEG–PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 1511, 397–411.

    Article  PubMed  CAS  Google Scholar 

  67. Lukyanov, A. N., Gao, Z., and Torchilin, V. P. (2003) Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 91, 97–102.

    Article  PubMed  CAS  Google Scholar 

  68. Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B. (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123, 12798–12801.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the NIH grant RO1 EB001961 to Vladimir P. Torchilin.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sawant, R.R., Torchilin, V.P. (2010). Polymeric Micelles: Polyethylene Glycol-Phosphatidylethanolamine (PEG-PE)-Based Micelles as an Example. In: Grobmyer, S., Moudgil, B. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 624. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-609-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-608-5

  • Online ISBN: 978-1-60761-609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics