Skip to main content

Methods for Building Quantitative Structure–Activity Relationship (QSAR) Descriptors and Predictive Models for Computer-Aided Design of Antimicrobial Peptides

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 618))

Abstract

Antimicrobial peptides are ubiquitous in nature where they play important roles in host defense and microbial control. More than 1,000 naturally occurring peptides have been described so far and those considered for pharmaceutical development have all been further optimized by rational approaches.

In recent years, high-throughput screening assays have been developed to specifically address optimization of AMPs. In addition to these cell-based in vivo systems, a range of computational in silico systems can be applied in order to predict the biological activity of AMPs for specific bacteria. Among them, quantitative structure–activity relationships (QSARs) method, which attempts to correlate chemical structure to biological measurement, has shown promising results in the optimization and discovery of peptide candidates. Therefore, this chapter is devoted to describe the QSAR method and recent progress applied in AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zasloff, M. (2002) Antimicrobial peptides of multicellular organism. Nature 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

  2. Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sonksen, C. P., Ludvigsen, S., Raventos, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jørgensen, S. G., Sørensen, M. V., Christensen, B. E., Kjærulff, S., Frimodt-Moller, N., Lehrer, R. I., Zasloff, M., and Kristensen, H. H. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980.

    Article  PubMed  CAS  Google Scholar 

  3. Raventos, D., Taboureau, O., Mygind, P. H., Nielsen, J. D., Sonksen, C. P., and Kristensen, H. H. (2005) Improving on nature’s defenses: optimization and high throughput screening of antimicrobial peptides. CCHTS 8, 219–233.

    Article  CAS  Google Scholar 

  4. Taboureau, O., Olsen, O. H., Nielsen, J. D., Raventos, D., Mygind, P. H., and Kristensen, H. H. (2005) Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chem. Biol. Drug. Des. 68, 48–57.

    Article  Google Scholar 

  5. Cherkasov, A. and Jankovic, B. (2004) Application of inductive QSAR descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules 9, 1034–1052.

    Article  PubMed  CAS  Google Scholar 

  6. Fjell, C. D., Hancock, R. E. W., and Cherkasov, A. (2007) AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23, 1148–1155.

    Article  PubMed  CAS  Google Scholar 

  7. Frecer, V., Ho, B., and Ding, J. L. (2004) De novo design of potent antimicrobial peptides. Antimicrob. Agents Chemother. 48, 3349–3357.

    Article  PubMed  CAS  Google Scholar 

  8. Friedrich, C. L., Moyles, D., Beveridge, T. J., and Hancock, R. E. (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44, 208–209.

    Article  Google Scholar 

  9. Tossi, A. (2005) Host defense peptides: roles and applications. Current Protein Pept. Sci. 6, 1–3.

    Article  CAS  Google Scholar 

  10. Hellberg, S., Sjostrom, M., Skagerberg, B., and And Wold, S. (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem. 30, 1126–1135.

    Article  PubMed  CAS  Google Scholar 

  11. Wold, S., Esbesen, K., and Geladi, P. (1987) Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52.

    Article  CAS  Google Scholar 

  12. Mee, R. P., Auton, T. R., and Morgan, P. J. (1997) Design of active analogues of a 15-residue peptide using D-optimal design, QSAR and a combinatorial search algorithm. J. Pept. Res. 49, 89–102.

    Article  PubMed  CAS  Google Scholar 

  13. Dudek, A. Z., Arodz, T., and Galvez, J. (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. CCHTS 9, 213–228.

    Article  CAS  Google Scholar 

  14. Lejon, T., Strom, M. B., and Svendsen, J. S. (2001) Antibiotic activity of pentadecapeptides modeled from amino acid descriptors. J. Pept. Sci. 7, 74–81.

    Article  PubMed  CAS  Google Scholar 

  15. Lejon, T., Stiberg, T., Strom, M. B., and Svendsen, J. S. (2004) Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins. J. Pept. Sci. 10, 329–335.

    Article  PubMed  CAS  Google Scholar 

  16. Cherkasov, A., Hilpert, K., Jenssen, H., Fjell, C. D., Waldbrook, M., Mullaly, S. C., Volkmer, R., and Hancock, R. E. (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 4, 65–74.

    Article  PubMed  CAS  Google Scholar 

  17. Lata, S., Sharma, B. K., and Raghava, G. P. (2007) Analysis and prediction of antibacterial peptides. BMC Bioinformatics 8, 263–273.

    Article  PubMed  Google Scholar 

  18. Gonzalez, M. P., Teran, C., Saiz-Urra, L., and Teijeira, M. (2008) Variable selection methods in QSAR: an overview. Curr. Top. Med. Chem. 8, 1606–1627.

    Article  PubMed  CAS  Google Scholar 

  19. Willett, P. (1995) Genetic algorithms in molecular recognition and design. Trends Biotechnol. 13, 516–521.

    Article  PubMed  CAS  Google Scholar 

  20. Montgomery, D. C. (2000) Design and Analysis of Experiments (5th ed.). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Taboureau, O. (2010). Methods for Building Quantitative Structure–Activity Relationship (QSAR) Descriptors and Predictive Models for Computer-Aided Design of Antimicrobial Peptides. In: Giuliani, A., Rinaldi, A. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 618. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-594-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-594-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-593-4

  • Online ISBN: 978-1-60761-594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics