Production of Recombinant Antimicrobial Peptides in Bacteria

  • Mateja Zorko
  • Roman Jerala
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Large quantities of antimicrobial peptides are required for investigations and clinical trials, therefore suitable production method alternative to traditional chemical synthesis is necessary. Production of recombinant antimicrobial peptides in prokaryotic systems has successfully demonstrated the viability of this approach. Production of antimicrobial peptides in Escherichia coli is potentially limited due to their toxicity to host cells and susceptibility to proteolytic degradation, which can be avoided using fusion protein approach. We describe antimicrobial peptide production in E. coli based on forcing antimicrobial peptides into inclusion bodies, which is affective for the production of large quantities of antimicrobial peptides. Chemical reagents for cleaving peptide bond between antimicrobial peptides and fusion proteins such as cyanogen bromide and diluted acid are selective and provide antimicrobial peptides for biological studies in short time.

Key words

Antimicrobial peptide recombinant fusion protein pET vector ketosteroid isomerase fusion protein inclusion bodies chemical cleavage 

References

  1. 1.
    Hara, S. and Yamakawa, M. (1996) Production in Escherichia coli of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 220, 664–669.PubMedCrossRefGoogle Scholar
  2. 2.
    Shen, Y., Lao, X. G., Chen, Y., Zhang, H. Z., and Xu, X. X. (2007) High-level expression of cecropin X in Escherichia coli. Int. J. Mol. Sci. 8, 478–491.Google Scholar
  3. 3.
    Cipakova, I., Gasperik, J., and Hostinova, E. (2006) Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr. Purif. 45, 269–274.PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, H. K., Chun, D. S., Kim, J. S., Yun, C. H., Lee, J. H., Hong, S. K., and Kang, D. K. (2006) Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 330–338.PubMedGoogle Scholar
  5. 5.
    Ingham, A. B. and Moore, R. J. (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechol. Appl. Biochem. 47, 1–9.Google Scholar
  6. 6.
    Xu, Z. N., Peng, L., Zhong, Z. X., Fang, X. M., and Cen, P. L. (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol. Progress. 22, 382–386.CrossRefGoogle Scholar
  7. 7.
    Majerle, A., Kidric, J., and Jerala, R. (2000) Production of stable isotope enriched antimicrobial peptides in Escherichia coli: an application to the production of a N-15-enriched fragment of lactoferrin. J. Biomol. Nmr. 18, 145–151.PubMedCrossRefGoogle Scholar
  8. 8.
    Wei, Q. D., Kim, Y. S., Seo, J. H., Jang, W. S., Lee, I. H., and Cha, H. J. (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microb. 71, 5038–5043.Google Scholar
  9. 9.
    Hwang, S. W., Lee, J. H., Park, H. B., Pyo, S. H., So, J. E., Lee, H. S., Hong, S. S., and Kim, J. H. (2001) A simple method for the purification of an antimicrobial peptide in recombinant Escherichia coli. Mol. Biotechnol. 18, 193–198.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, J. H., Kim, J. H., Hwang, S. W., Lee, W. J., Yoon, H. K., Lee, H. S., and Hong, S. S. (2000) High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun. 277, 575–580.PubMedGoogle Scholar
  11. 11.
    Reichhart, J. M., Petit, I., Legrain, M., Dimarcq, J. L., Keppi, E., Lecocq, J. P., Hoffmann, J. A., and Achstetter, T. (1992) Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshfly phormia-terraenovae. Invertebr. Reprod. Dev. 21, 15–24.CrossRefGoogle Scholar
  12. 12.
    Andersons, D., Engstrom, A., Josephson, S., Hansson, L., and Steiner, H. (1991) Biologically-active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein-A. A. Biochem. J. 280, 219–224.Google Scholar
  13. 13.
    Rao, X. C., Li, S., Hu, J. C., Jin, X. L., Hu, X. M., Huang, J. J., Chen, Z. J., Zhu, J. M., and Hu, F. Q. (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr. Purif. 36, 11–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Moon, J. Y., Henzler-Wildman, K. A., and Ramamoorthy, A. (2006) Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta. 1758, 1351–1358.PubMedGoogle Scholar
  15. 15.
    Zorko, M., Japelj, B., Hafner-Bratkovic, I., and Jerala, R. (2009) Expression, purification and structural studies of a short antimicrobial peptide. Biochim. Biophys. Acta 1788, 314–323.PubMedGoogle Scholar
  16. 16.
    Jonasson, P., Liljeqvist, S., Nygren, P. A., and Stahl, S. (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechol. Appl. Biochem. 35, 91–105.Google Scholar
  17. 17.
    Kuliopulos, A. and Walsh, C. T. (1994) Production, purification, and cleavage of tandem repeats of recombinant peptides. J. Am. Chem. Soc. 116, 4599–4607.CrossRefGoogle Scholar
  18. 18.
    Lee, J. H., Skowron, P. M., Rutkowska, S. M., Hong, S. S., and Kim, S. C. (1996) Sequential amplification of cloned DNA as tandem multimers using class-IIS restriction enzymes. Genetic Anal. Biomol. Eng. 13, 139–145.Google Scholar
  19. 19.
    Gaussier, H., Morency, H., Lavoie, M. C., and Subirade, M. (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl. Environ. Microb. 68, 4803–4808.CrossRefGoogle Scholar
  20. 20.
    Kohno, T., Kusunoki, H., Sato, K., and Wakamatsu, K. (1998) A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with N-15 and N-15/C-13. J. Biomol. Nmr. 12, 109–121.PubMedCrossRefGoogle Scholar
  21. 21.
    Haught, C., Davis, G. D., Subramanian, R., Jackson, K. W., and Harrison, R. G. (1998) Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol. Bioeng. 57, 55–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., Popova, L. I., Zakharov, M. V., Gorokhovatsky, A. Y., and Vinokurov, L. M. (2003) EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expr. Purif. 27, 55–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Fassina, G., Merli, S., Germani, S., Ciliberto, G., and Cassani, G. (1994) High-yield expression and purification of human endothelin-1. Protein Expr. Purif. 5, 559–568.PubMedCrossRefGoogle Scholar
  24. 24.
    Xu, X. X., Jin, F. L., Yu, X. Q., Ji, S. X., Wang, J., Cheng, H. X., Wang, C., and Zhang, W. Q. (2007) Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expr. Purif. 53, 293–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Morassutti, C., De Amicis, F., Bandiera, A., and Marchetti, S. (2005) Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expr. Purif. 39, 160–168.PubMedCrossRefGoogle Scholar
  26. 26.
    Wei, Q. D., Kim, Y. S., Seo, J. H., and Cha, H. J. (2005) Facilitation of expression and purification of antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71, 5038–5043.PubMedCrossRefGoogle Scholar
  27. 27.
    Moon, W. J., Hwang, D. K., Park, E. J., Kim, Y. M., and Chae, Y. K. (2007) Recombinant expression, isotope labeling, refolding, and purification of an antimicrobial peptide, piscidin. Protein Expr. Purif. 51, 141–146.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang, H. Y. and Speicher, D. W. (2004) Identification of alternative products and optimization of 2-nitro-5-thiocyanatobenzoic acid cyanylation and cleavage at cysteine residues. Anal. Biochem. 334, 48–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mateja Zorko
    • 1
  • Roman Jerala
    • 1
  1. 1.Department of BiotechnologyNational Institute of ChemistryLjubljanaSlovenia

Personalised recommendations