Therapeutic Potential of HDPs as Immunomodulatory Agents

  • Håvard Jenssen
  • Robert E. W. Hancock
Part of the Methods in Molecular Biology book series (MIMB, volume 618)


One of the most significant advances in medical history is the discovery and development of antibiotics, which in the middle of last century was flourishing and appeared to be the ultimate solution to the treatment of life-threatening human bacterial diseases. However, lately there has been a huge decline in the rate of discovery of new antimicrobial intervention strategies in parallel with an increasing incidence of multidrug-resistant pathogens; if these circumstances do not change we will continue to approach the end of the antibiotic era. Facing this dark future, scientists are considering new strategies for intervention tailored around the appropriate (selective) stimulation of the host’s immune system, and particularly rapid acting innate immunity, as an alternative to direct targeting of microbial pathogens. One recent player in such an immunomodulatory strategy is the naturally occurring host defence peptides (HDP) and their synthetic innate defence regulator (IDR) analogues. In this chapter, we will discuss the potential therapeutic use of HDPs and IDRs as immunomodulatory agents.

Key words

Cationic host defence peptides anti-infective therapy antimicrobial peptides innate defence regulators immune stimulation immunomodulator anti-inflammatory 



This manuscript is dedicated to the memory of Aaron W.J. Wyatt who tragically passed away on 24 December 2008. Aaron was not only a superb colleague but also a good friend.

The author’s research in this area was supported by the Foundation for the National Institutes of Health, Gates Foundation and Canadian Institutes for Health Research through two separate Grand Challenges in Global Health Initiatives and by Genome British Columbia for the Pathogenomics of Innate Immunity Research Program. REWH is the recipient of a Canada Research Chair.


  1. 1.
    Hamill, P., Brown, K., Jenssen, H., and Hancock, R. E. W. (2008) Novel anti-infectives: is host defence the answer?. Curr. Opin. Biotechnol. 19, 628–636.PubMedCrossRefGoogle Scholar
  2. 2.
    Lai, Y. and Gallo, R. L. (2008) Toll-like receptors in skin infections and inflammatory diseases. Infect. Disord. Drug Targets 8, 144–155.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Neill, L. A. (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 5, 549–563.PubMedCrossRefGoogle Scholar
  4. 4.
    Kanzler, H., Barrat, F. J., Hessel, E. M., and Coffman, R. L. (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med. 13, 552–559.PubMedCrossRefGoogle Scholar
  5. 5.
    Romagne, F. (2007) Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov. Today 12, 80–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Wales, J., Andreakos, E., Feldmann, M., and Foxwell, B. (2007) Targeting intracellular mediators of pattern-recognition receptor signalling to adjuvant vaccination. Biochem. Soc. Trans. 35, 1501–1503.PubMedCrossRefGoogle Scholar
  7. 7.
    Creagh, E. M. and O’Neill, L. A. (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27, 352–357.PubMedCrossRefGoogle Scholar
  8. 8.
    Alper, S., Laws, R., Lackford, B., Boyd, W. A., Dunlap, P., Freedman, J. H., and Schwartz, D. A. (2008) Identification of innate immunity genes and pathways using a comparative genomics approach. Proc. Natl. Acad. Sci. USA 105, 7016–7021.PubMedCrossRefGoogle Scholar
  9. 9.
    Tegner, J., Nilsson, R., Bajic, V. B., Bjorkegren, J., and Ravasi, T. (2006) Systems biology of innate immunity. Cell. Immunol. 244, 105–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Lynn, D. J., Winsor, G. L., Chan, C., Richard, N., Laird, M. R., Barsky, A., Gardy, J. L., Roche, F. M., Chan, T. H., Shah, N., Lo, R., Naseer, M., Que, J., Yau, M., Acab, M., Tulpan, D., Whiteside, M. D., Chikatamarla, A., Mah, B., Munzner, T., Hokamp, K., Hancock, R. E. W., and Brinkman, F. S. (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol. 4, 218.PubMedCrossRefGoogle Scholar
  11. 11.
    Korb, M., Rust, A. G., Thorsson, V., Battail, C., Li, B., Hwang, D., Kennedy, K. A., Roach, J. C., Rosenberger, C. M., Gilchrist, M., Zak, D., Johnson, C., Marzolf, B., Aderem, A., Shmulevich, I., and Bolouri, H. (2008) The innate immune database (IIDB). BMC Immunol. 9, 7.Google Scholar
  12. 12.
    Hancock, R. E. W. and Sahl, H. G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1157.Google Scholar
  13. 13.
    Oppenheim, J. J. and Yang, D. (2005) Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17, 359–365.PubMedCrossRefGoogle Scholar
  14. 14.
    Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.PubMedCrossRefGoogle Scholar
  15. 15.
    Fjell, C. D., Hancock, R. E. W., and Cherkasov, A. (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23, 1148–1155.PubMedCrossRefGoogle Scholar
  16. 16.
    Jenssen, H., Hamill, P., and Hancock, R. E. W. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.PubMedCrossRefGoogle Scholar
  17. 17.
    Hancock, R. E. W. (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156–164.PubMedCrossRefGoogle Scholar
  18. 18.
    Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol. 3, 238–250.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, M., Maier, E., Benz, R., and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235–7242.PubMedCrossRefGoogle Scholar
  20. 20.
    Hallock, K. J., Lee, D. K., and Ramamoorthy, A. (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 84, 3052–3060.PubMedCrossRefGoogle Scholar
  21. 21.
    Henzler Wildman, K. A., Lee, D. K., and Ramamoorthy, A. (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545–6558.PubMedCrossRefGoogle Scholar
  22. 22.
    Matsuzaki, K., Murase, O., Fujii, N., and Miyajima, K. (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., and Huang, H. W. (2001) Barrel-Stave model or Toroidal model? A case study on melittin pores. Biophys. J. 81, 1475–1485.PubMedCrossRefGoogle Scholar
  24. 24.
    Ehrenstein, G. and Lecar, H. (1977) Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10, 1–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., and Shai, Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, L., Rozek, A., and Hancock, R. E. W. (2001) Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276, 35714–35722.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, C. B., Kim, H. S., and Kim, S. C. (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257.PubMedCrossRefGoogle Scholar
  28. 28.
    Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V., and Hancock, R. E. W. (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in escherichia coli. Antimicrob. Agents Chemother. 46, 605–614.PubMedCrossRefGoogle Scholar
  29. 29.
    Subbalakshmi, C. and Sitaram, N. (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160, 91–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., and Selsted, M. E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553–561.PubMedCrossRefGoogle Scholar
  31. 31.
    Boman, H. G., Agerberth, B., and Boman, A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978–2984.PubMedGoogle Scholar
  32. 32.
    Friedrich, C. L., Rozek, A., Patrzykat, A., and Hancock, R. E. W. (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J. Biol. Chem. 276, 24015–24022.PubMedCrossRefGoogle Scholar
  33. 33.
    Kragol, G., Lovas, S., Varadi, G., Condie, B. A., Hoffmann, R., and Otvos, L., Jr. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026.PubMedCrossRefGoogle Scholar
  34. 34.
    Otvos, L., Jr., O, I., Rogers, M. E., Consolvo, P. J., Condie, B. A., Lovas, S., Bulet, P., and Blaszczyk-Thurin, M. (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150–14159.PubMedCrossRefGoogle Scholar
  35. 35.
    Hechard, Y. and Sahl, H. G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84, 545–557.PubMedCrossRefGoogle Scholar
  36. 36.
    Podolsky, D. K. (2002) Inflammatory bowel disease. N. Engl. J. Med. 347, 417–429.PubMedCrossRefGoogle Scholar
  37. 37.
    Wehkamp, J., Fellermann, K., Herrlinger, K. R., Baxmann, S., Schmidt, K., Schwind, B., Duchrow, M., Wohlschlager, C., Feller, A. C., and Stange, E. F. (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 14, 745–752.PubMedCrossRefGoogle Scholar
  38. 38.
    Wehkamp, J., Harder, J., Weichenthal, M., Mueller, O., Herrlinger, K. R., Fellermann, K., Schroeder, J. M., and Stange, E. F. (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm. Bowel. Dis. 9, 215–223.PubMedCrossRefGoogle Scholar
  39. 39.
    Schauber, J., Rieger, D., Weiler, F., Wehkamp, J., Eck, M., Fellermann, K., Scheppach, W., Gallo, R. L., and Stange, E. F. (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur. J. Gastroenterol. Hepatol. 18, 615–621.PubMedCrossRefGoogle Scholar
  40. 40.
    Wehkamp, J., Schmid, M., and Stange, E. F. (2007) Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr. Opin. Gastroenterol. 23, 370–378.PubMedCrossRefGoogle Scholar
  41. 41.
    Gudmundsson, G. H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., and Salcedo, R. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238, 325–332.PubMedCrossRefGoogle Scholar
  42. 42.
    Gallo, R. L., Kim, K. J., Bernfield, M., Kozak, C. A., Zanetti, M., Merluzzi, L., and Gennaro, R. (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272, 13088–13093.PubMedCrossRefGoogle Scholar
  43. 43.
    Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R. A., Pestonjamasp, V., Piraino, J., Huttner, K., and Gallo, R. L. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457.PubMedCrossRefGoogle Scholar
  44. 44.
    Putsep, K., Carlsson, G., Boman, H. G., and Andersson, M. (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149.PubMedCrossRefGoogle Scholar
  45. 45.
    Cherkasov, A., Hilpert, K., Jenssen, H., Fjell, C. D., Waldbrook, M., Mullaly, S. C., Volkmer, R., and Hancock, R. E. W. (2008) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 1, 65–74.Google Scholar
  46. 46.
    Bowdish, D. M., Davidson, D. J., Lau, Y. E., Lee, K., Scott, M. G., and Hancock, R. E. W. (2005) Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol. 77, 451–459.PubMedCrossRefGoogle Scholar
  47. 47.
    Scott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D., and Hancock, R. E. W. (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891.PubMedGoogle Scholar
  48. 48.
    Fukumoto, K., Nagaoka, I., Yamataka, A., Kobayashi, H., Yanai, T., Kato, Y., and Miyano, T. (2005) Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr. Surg. Int. 21, 20–24.PubMedCrossRefGoogle Scholar
  49. 49.
    McGwire, B. S., Olson, C. L., Tack, B. F., and Engman, D. M. (2003) Killing of African trypanosomes by antimicrobial peptides. J. Infect. Dis. 188, 146–152.PubMedCrossRefGoogle Scholar
  50. 50.
    Joly, S., Maze, C., McCray, P. B., Jr., and Guthmiller, J. M. (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J. Clin. Microbiol. 42, 1024–1029.PubMedCrossRefGoogle Scholar
  51. 51.
    Giacometti, A., Cirioni, O., Ghiselli, R., Mocchegiani, F., D’Amato, G., Circo, R., Orlando, F., Skerlavaj, B., Silvestri, C., Saba, V., Zanetti, M., and Scalise, G. (2004) Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock. Am. J. Respir. Crit. Care Med. 169, 187–194.PubMedCrossRefGoogle Scholar
  52. 52.
    Brogden, K. A., Nordholm, G., and Ackermann, M. (2007) Antimicrobial activity of cathelicidins BMAP28, SMAP28, SMAP29, and PMAP23 against Pasteurella multocida is more broad-spectrum than host species specific. Vet. Microbiol. 119, 76–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., and Verlander, M. (2000) Large-scale synthesis of peptides. Biopolymers 55, 227–250.PubMedCrossRefGoogle Scholar
  54. 54.
    Schneider, S. E., Bray, B. L., Mader, C. J., Friedrich, P. E., Anderson, M. W., Taylor, T. S., Boshernitzan, N., Niemi, T. E., Fulcher, B. C., Whight, S. R., White, J. M., Greene, R. J., Stoltenberg, L. E., and Lichty, M. (2005) Development of HIV fusion inhibitors. J. Pept. Sci. 11, 744–753.PubMedCrossRefGoogle Scholar
  55. 55.
    Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sonksen, C. P., Ludvigsen, S., Raventos, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jorgensen, S. G., Sorensen, M. V., Christensen, B. E., Kjaerulff, S., Frimodt-Moller, N., Lehrer, R. I., Zasloff, M., and Kristensen, H. H. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980.PubMedCrossRefGoogle Scholar
  56. 56.
    Gottlieb, C. T., Thomsen, L. E., Ingmer, H., Mygind, P. H., Kristensen, H. H., and Gram, L. (2008) Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol. 8, 205.PubMedCrossRefGoogle Scholar
  57. 57.
    Hara, S., Mukae, H., Sakamoto, N., Ishimoto, H., Amenomori, M., Fujita, H., Ishimatsu, Y., Yanagihara, K., and Kohno, S. (2008) Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem. Biophys. Res. Commun. 374, 709–713.PubMedCrossRefGoogle Scholar
  58. 58.
    Chatterjee, J., Gilon, C., Hoffman, A., and Kessler, H. (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342.PubMedCrossRefGoogle Scholar
  59. 59.
    Biron, E., Chatterjee, J., Ovadia, O., Langenegger, D., Brueggen, J., Hoyer, D., Schmid, H. A., Jelinek, R., Gilon, C., Hoffman, A., and Kessler, H. (2008) Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem. Int. Ed. Engl. 47, 2595–2599.PubMedCrossRefGoogle Scholar
  60. 60.
    Kobsa, S. and Saltzman, W. M. (2008) Bioengineering approaches to controlled protein delivery. Pediatr. Res. 63, 513–519.PubMedCrossRefGoogle Scholar
  61. 61.
    Barnard, D. L. (2001) Pegasys (Hoffmann-La Roche). Curr. Opin. Investig. Drugs 2, 1530–1538.PubMedGoogle Scholar
  62. 62.
    Giannis, A. and Kolter, T. (1993) Pepidomimetics for receptor ligands – discovery, development, and medical perspectives. Angew. Chem. Int. Ed. 32, 24.CrossRefGoogle Scholar
  63. 63.
    Wiley, R. A. and Rich, D. H. (1993) Peptidomimetics derived from natural products. Med. Res. Rev. 13, 327–384.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanborn, T. J., Wu, C. W., Zuckermann, R. N., and Barron, A. E. (2002) Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with alpha-chiral side chains. Biopolymers 63, 12–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Domagk, G. (1935) A report on the chemotherapy of bacterial infections. Deut. Med. Woch. Ixi:250.Google Scholar
  66. 66.
    Trefouel, J., Nitti, F., and Bovet, D. (1935) Activity of p-aminophenylsulfamide in the experimental streptococcal infections of the mouse and rabbit. CR Seances Soc. Biol. 120, 756.Google Scholar
  67. 67.
    Lamb, H. M. and Wiseman, L. R. (1998) Pexiganan acetate. Drugs 56, 1047–1052, discussion 1053–1054.PubMedCrossRefGoogle Scholar
  68. 68.
    Trotti, A., Garden, A., Warde, P., Symonds, P., Langer, C., Redman, R., Pajak, T. F., Fleming, T. R., Henke, M., Bourhis, J., Rosenthal, D. I., Junor, E., Cmelak, A., Sheehan, F., Pulliam, J., Devitt-Risse, P., Fuchs, H., Chambers, M., O’Sullivan, B., and Ang, K. K. (2004) A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int. J. Radiat. Oncol. Biol. Phys. 58, 674–681.PubMedCrossRefGoogle Scholar
  69. 69.
    van Saene, H., van Saene, J., Silvestri, L., de la Cal, M., Sarginson, R., and Zandstra, D. (2007) Iseganan failure due to the wrong pharmaceutical technology. Chest 132, 1412.PubMedCrossRefGoogle Scholar
  70. 70.
    Kollef, M., Pittet, D., Sanchez Garcia, M., Chastre, J., Fagon, J. Y., Bonten, M., Hyzy, R., Fleming, T. R., Fuchs, H., Bellm, L., Mercat, A., Manez, R., Martinez, A., Eggimann, P., Daguerre, M., and Luyt, C. E. (2006) A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 173, 91–97.PubMedCrossRefGoogle Scholar
  71. 71.
    Fritsche, T. R., Rhomberg, P. R., Sader, H. S., and Jones, R. N. (2008) Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother. 61, 1092–1098.PubMedCrossRefGoogle Scholar
  72. 72.
    Fritsche, T. R., Rhomberg, P. R., Sader, H. S., and Jones, R. N. (2008) Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob. Agents Chemother. 52, 1187–1189.PubMedCrossRefGoogle Scholar
  73. 73.
    Scott, M. G., Dullaghan, E., Mookherjee, N., Glavas, N., Waldbrook, M., Thompson, A., Wang, A., Lee, K., Doria, S., Hamill, P., Yu, J. J., Li, Y., Donini, O., Guarna, M. M., Finlay, B. B., North, J. R., and Hancock, R. E. W. (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472.PubMedCrossRefGoogle Scholar
  74. 74.
    Lai, X. Z., Feng, Y., Pollard, J., Chin, J. N., Rybak, M. J., Bucki, R., Epand, R. F., Epand, R. M., and Savage, P. B. (2008) Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res. 41, 1233–1240.PubMedCrossRefGoogle Scholar
  75. 75.
    Chin, J. N., Rybak, M. J., Cheung, C. M., and Savage, P. B. (2007) Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 1268–1273.PubMedCrossRefGoogle Scholar
  76. 76.
    Van Bambeke, F., Mingeot-Leclercq, M. P., Struelens, M. J., and Tulkens, P. M. (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29, 124–134.PubMedCrossRefGoogle Scholar
  77. 77.
    Savage, P. B., Li, C., Taotafa, U., Ding, B., and Guan, Q. (2002) Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett. 217, 1–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Savage, P. B., Pollard, J., Feng, Y., Reddy, L. K., and Genberg, C. (2008): Use of a Ceragenin-Based Coating to Prevent Bacterial Colonization of Urinary Catheters. In Interscience Conference on Antimicrobial Agents & Chemotherapy pp. Poster K–1479.Google Scholar
  79. 79.
    Beckloff, N., Laube, D., Castro, T., Furgang, D., Park, S., Perlin, D., Clements, D., Tang, H., Scott, R. W., Tew, G. N., and Diamond, G. (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother. 51, 4125–4132.PubMedCrossRefGoogle Scholar
  80. 80.
    Scott, R. W., DeGrado, W. F., and Tew, G. N. (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr. Opin. Biotechnol. 19, 620–627.PubMedCrossRefGoogle Scholar
  81. 81.
    Viola, A. and Luster, A. D. (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol 48, 171–197.PubMedCrossRefGoogle Scholar
  82. 82.
    Sawai, M. V., Jia, H. P., Liu, L., Aseyev, V., Wiencek, J. M., McCray, P. B., Jr., Ganz, T., Kearney, W. R., and Tack, B. F. (2001) The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry 40, 3810–3816.PubMedCrossRefGoogle Scholar
  83. 83.
    Mandard, N., Sodano, P., Labbe, H., Bonmatin, J. M., Bulet, P., Hetru, C., Ptak, M., and Vovelle, F. (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur. J. Biochem. 256, 404–410.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang, G. (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide kr-12 in lipid micelles. J. Biol. Chem. 283, 32637–32643.PubMedCrossRefGoogle Scholar
  85. 85.
    Rozek, A., Friedrich, C. L., and Hancock, R. E. W. (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 15765–15774.PubMedCrossRefGoogle Scholar
  86. 86.
    Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32.Google Scholar
  87. 87.
    Bowdish, D. M., Davidson, D. J., Scott, M. G., and Hancock, R. E. W. (2005) Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother. 49, 1727–, 1732.PubMedCrossRefGoogle Scholar
  88. 88.
    Mookherjee, N., Brown, K. L., Bowdish, D. M., Doria, S., Falsafi, R., Hokamp, K., Roche, F. M., Mu, R., Doho, G. H., Pistolic, J., Powers, J. P., Bryan, J., Brinkman, F. S., and Hancock, R. E. W. (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176, 2455–2464.PubMedGoogle Scholar
  89. 89.
    Mookherjee, N., Wilson, H. L., Doria, S., Popowych, Y., Falsafi, R., Yu, J. J., Li, Y., Veatch, S., Roche, F. M., Brown, K. L., Brinkman, F. S., Hokamp, K., Potter, A., Babiuk, L. A., Griebel, P. J., and Hancock, R. E. W. (2006) Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J. Leukoc. Biol. 80, 1563–1574.PubMedCrossRefGoogle Scholar
  90. 90.
    Bowdish, D. M. and Hancock, R. E. W. (2005) Anti-endotoxin properties of cationic host defence peptides and proteins. J. Endotoxin Res. 11, 230–236.PubMedGoogle Scholar
  91. 91.
    Ohgami, K., Ilieva, I. B., Shiratori, K., Isogai, E., Yoshida, K., Kotake, S., Nishida, T., Mizuki, N., and Ohno, S. (2003) Effect of human cationic antimicrobial protein 18 Peptide on endotoxin-induced uveitis in rats. Invest Ophthalmol. Vis. Sci. 44, 4412–4418.PubMedCrossRefGoogle Scholar
  92. 92.
    Davidson, D. J., Currie, A. J., Reid, G. S., Bowdish, D. M., MacDonald, K. L., Ma, R. C., Hancock, R. E. W., and Speert, D. P. (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 172, 1146–1156.PubMedGoogle Scholar
  93. 93.
    Tjabringa, G. S., Ninaber, D. K., Drijfhout, J. W., Rabe, K. F., and Hiemstra, P. S. (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int. Arch. Allergy Immunol. 140, 103–112.PubMedCrossRefGoogle Scholar
  94. 94.
    Chertov, O., Michiel, D. F., Xu, L., Wang, J. M., Tani, K., Murphy, W. J., Longo, D. L., Taub, D. D., and Oppenheim, J. J. (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940.PubMedCrossRefGoogle Scholar
  95. 95.
    Kurosaka, K., Chen, Q., Yarovinsky, F., Oppenheim, J. J., and Yang, D. (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J. Immunol. 174, 6257–6265.PubMedGoogle Scholar
  96. 96.
    Territo, M. C., Ganz, T., Selsted, M. E., and Lehrer, R. (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 84, 2017–2020.PubMedCrossRefGoogle Scholar
  97. 97.
    Djanani, A., Mosheimer, B., Kaneider, N. C., Ross, C. R., Ricevuti, G., Patsch, J. R., and Wiedermann, C. J. (2006) Heparan sulfate proteoglycan-dependent neutrophil chemotaxis toward PR-39 cathelicidin. J. Inflam. (Lond) 3, 14.CrossRefGoogle Scholar
  98. 98.
    Yu, J., Mookherjee, N., Wee, K., Bowdish, D. M., Pistolic, J., Li, Y., Rehaume, L., and Hancock, R. E. W. (2007) Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. J. Immunol. 179, 7684–7691.PubMedGoogle Scholar
  99. 99.
    Bowdish, D. M., Davidson, D. J., Speert, D. P., and Hancock, R. E. W. (2004) The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J. Immunol. 172, 3758–3765.PubMedGoogle Scholar
  100. 100.
    Lau, Y. E., Rozek, A., Scott, M. G., Goosney, D. L., Davidson, D. J., and Hancock, R. E. W. (2005) Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infect. Immun. 73, 583–591.PubMedCrossRefGoogle Scholar
  101. 101.
    Niyonsaba, F., Someya, A., Hirata, M., Ogawa, H., and Nagaoka, I. (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J. Immunol. 31, 1066–1075.PubMedCrossRefGoogle Scholar
  102. 102.
    Li, J., Post, M., Volk, R., Gao, Y., Li, M., Metais, C., Sato, K., Tsai, J., Aird, W., Rosenberg, R. D., Hampton, T. G., Sellke, F., Carmeliet, P., and Simons, M. (2000) PR39, a peptide regulator of angiogenesis. Nat. Med. 6, 49–55.PubMedCrossRefGoogle Scholar
  103. 103.
    Gallo, R. L., Ono, M., Povsic, T., Page, C., Eriksson, E., Klagsbrun, M., and Bernfield, M. (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl. Acad. Sci. USA 91, 11035–11039.PubMedCrossRefGoogle Scholar
  104. 104.
    Schroeder, J. M. and Harder, J. (2006) Antimicrobial peptides in skin disease. Drug Discov. Today 3, 8.Google Scholar
  105. 105.
    Melo, M. N., Dugourd, D., and Castanho, M. A. (2006) Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Patents Anti-Infect Drug Disc. 1, 201–207.CrossRefGoogle Scholar
  106. 106.
    Ilyina, E., Roongta, V., and Mayo, K. H. (1997) NMR structure of a de novo designed, peptide 33mer with two distinct, compact beta-sheet folds. Biochemistry 36, 5245–5250.PubMedCrossRefGoogle Scholar
  107. 107.
    Mayo, K. H., Haseman, J., Young, H. C., and Mayo, J. W. (2000) Structure-function relationships in novel peptide dodecamers with broad-spectrum bactericidal and endotoxin-neutralizing activities. Biochem. J. 349 Pt 3, 717–728.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Håvard Jenssen
    • 1
  • Robert E. W. Hancock
    • 2
  1. 1.Department of Science, Systems, and ModelsRoskilde UniversityRoskildeDenmark
  2. 2.Centre for Microbial Diseases and Immunity ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations