Skip to main content

Evaluation of Targets for Ovarian Cancer Gene Silencing Therapy: In Vitro and In Vivo Approaches

  • Protocol
  • First Online:
RNA Interference

Part of the book series: Methods in Molecular Biology ((MIMB,volume 623))

Abstract

Ovarian cancer is the most lethal neoplasm of the female genital tract. Despite progress with chemotherapy, surgery and supportive care, the death rate remains extremely high. Gene silencing therapy represents a possible opportunity to advance the management of ovarian cancer patients. The concept of gene silencing therapy, which is based on RNA interference (RNAi) phenomenon, requires selection of targeted genes and development of a strategy for genetic drug development. Recently, plenty of research studies in ovarian cancer genetics have been published. Although they can be analyzed regarding candidate gene selection, the therapeutic effect of particular gene silencing can only be evaluated experimentally at this time. Obviously, the correct choice and application of a genetic drug delivery system determines the efficacy of gene silencing. Complexation of therapeutic nucleic acids with cationic polymers, cationic lipids, or their combination, represents a main strategy of non-virus-mediated delivery of genetic drug. Owing to a tendency of ovarian cancer to spread through the abdominal cavity, a delivery system should allow intraperitoneal mode of administration. Therefore, clinical application of RNAi may rely on a combination of biosciences and nanotechnology: in particular, identifying optimal small interfering RNAs (siRNAs) against optimal target genes and developing an efficient system for siRNA delivery into the cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  2. Omura, G.A. (2008) Progress in gynecologic cancer research: the gynecologic oncology group experience. Semin. Oncol. 35, 507–521.

    Article  PubMed  Google Scholar 

  3. Aigner, A. (2007) Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl. Microbiol. Biotechnol. 76, 9–21.

    Article  CAS  PubMed  Google Scholar 

  4. Paddison, P.J., Caudy, A.A., Sachidanandam, R. and Hannon, G.J. (2004) Short hairpin activated gene silencing in mammalian cells. Methods Mol. Biol. 265, 85–100.

    CAS  PubMed  Google Scholar 

  5. Hannon, G.J. and Conklin, D.S. (2004) RNA interference by short hairpin RNAs expressed in vertebrate cells. Methods Mol. Biol. 257, 255–266.

    CAS  PubMed  Google Scholar 

  6. Tchernitsa, O.I., Sers, C., Zuber, J., Hinzmann, B., Grips, M., Schramme, A., et al. (2004) Transcriptional basis of KRAS oncogene-mediated cellular transformation in ovarian epithelial cells. Oncogene 23, 4536–4555.

    Article  CAS  PubMed  Google Scholar 

  7. Welsh, J.B., Zarrinkar, P.P., Sapinoso, L.M., Kern, S.G., Behling, C.A., Monk, B.J., et al. (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. U.S.A. 98, 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  8. Adib, T.R., Henderson, S., Perrett, C., Hewitt, D., Bourmpoulia, D., Ledermann, J., and Boshoff, C. (2004) Predicting biomarkers for ovarian cancer using gene-expression microarrays. Br. J. Cancer 90, 686–692.

    Article  CAS  PubMed  Google Scholar 

  9. Rogalla, P., Drechsler, K., Frey, G., Hennig, Y., Helmke, B., Bonk, U., and Bullerdiek, J. (1996) HMGI-C expression patterns in human tissues: Implications for the genesis of frequent mesenchymal tumors. Am. J. Pathol. 149, 775–779.

    CAS  PubMed  Google Scholar 

  10. Gattas, G.J., Quade, B.J., Nowak, R.A., and Morton, C.C. (1999) HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosomes Cancer 25, 316–322.

    Article  CAS  PubMed  Google Scholar 

  11. Rogalla, P., Drechsler, K., Kazmierczak, B., Rippe, V., Bonk, U., and Bullerdiek, J. (1997) Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: relationship to histologic grade. Mol. Carcinog. 19, 153–156.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer, B., Loeschke, S., Schultze, A., Weigel, T., Sandkamp, M., Goldmann, T., et al. (2007) HMGA2 overexpression in non-small cell lung cancer. Mol. Carcinog. 46, 503–511.

    Article  CAS  PubMed  Google Scholar 

  13. Abe, N., Watanabe, T., Suzuki, Y., Matsumoto, N., Masaki, T., Mori, T., et al. (2003) An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue. Br. J. Cancer 89, 2104–2109.

    Article  CAS  PubMed  Google Scholar 

  14. Chau, K.Y., Manfioletti, G., Cheung-Chau, K.W., Fusco, A., Dhomen, N., Sowden, J.C., et al. (2003) Derepression of HMGA2 gene expression in retinoblastoma is associated with cell proliferation. Mol. Med. 9, 154–165.

    Article  CAS  PubMed  Google Scholar 

  15. Miyazawa, J., Mitoro, A., Kawashiri, S., Chada, K.K., and Imai, K. (2004) Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res. 64, 2024–2029.

    Article  CAS  PubMed  Google Scholar 

  16. Andrieux, J., Demory, J.L., Dupriez, B., Quief, S., Plantier, I., Roumier, C. et al. (2004) Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia. Genes Chromosomes Cancer 39, 82–87.

    Article  CAS  PubMed  Google Scholar 

  17. Berlingieri, M.T., Manfioletti, G., Santoro, M., Bandiera, A., Visconti, R., Giancotti, V., and Fusco, A. (1995) Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol. Cell Biol. 15, 1545–1553.

    CAS  PubMed  Google Scholar 

  18. Pentimalli, F., Dentice, M., Fedele, M., Pierantoni, G.M., Cito, L., Pallante, P., et al. (2003) Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res. 63, 7423–7427.

    CAS  PubMed  Google Scholar 

  19. Malek, A., Bakhidze, E., Noske, A., Sers, C., Aigner, A., Schafer, R., and Tchernitsa, O. (2008) HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int. J. Cancer 123, 348–356.

    Article  CAS  PubMed  Google Scholar 

  20. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, B., Latek, R., Hossbach, M., Tuschl, T., and Lewitter, F. (2004) siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32(Web Server issue), W130-W134.

    Article  CAS  PubMed  Google Scholar 

  22. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  CAS  PubMed  Google Scholar 

  23. Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058.

    Article  CAS  PubMed  Google Scholar 

  24. Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Malek, A., Tchernitsa, O. (2010). Evaluation of Targets for Ovarian Cancer Gene Silencing Therapy: In Vitro and In Vivo Approaches. In: Min, WP., Ichim, T. (eds) RNA Interference. Methods in Molecular Biology, vol 623. Humana Press. https://doi.org/10.1007/978-1-60761-588-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-588-0_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-587-3

  • Online ISBN: 978-1-60761-588-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics