Advertisement

Immunology of Vaccine Adjuvants

  • Carla M.S. Ribeiro
  • Virgil E.J.C. Schijns
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 626)

Abstract

In recent times vaccine adjuvants, or immunopotentiators, received abundant attention in the media as critical ingredients of current and future vaccines. Indeed, vaccine adjuvants are recognized to make the difference between competing vaccines based on identical antigens. Moreover, it is recognized that vaccines designed for certain indications require a matching combination of selected antigen(s) together with a critical immunopotentiator that selectively drives the required immune pathway with minimal adverse reactions. Recently, the mechanistic actions of some immunopotentiators have become clearer as a result of research focused on innate immunity receptors. These insights enable more rational adjuvant and vaccine design, which, ideally, is based on predictable immunophenotypes following vaccination.

This chapter addresses immunopotentiators, classed according to their (presumed) mechanisms of action. They are categorized functionally in two major groups as facilitators of signal 1 and/or signal 2. The mode(s) of action of some well-known adjuvant prototypes is discussed in the context of this classification.

Key words

Adjuvant signal 1 signal 2 stranger danger 

References

  1. 1.
    Van Duin, D., Medzhitov, R., Shaw, A. C. (2006) Triggering TLR signalling in vaccination. Trends Immunol 27, 49–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Schijns, V. E. J. C. (2000) Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol 12, 456–463.PubMedCrossRefGoogle Scholar
  3. 3.
    Gershon, A. A. (2003) Varicella vaccine: rare serious problems-but the benefits still outweight the risks. J Infec Dis 7, 945–947.CrossRefGoogle Scholar
  4. 4.
    Rappuoli, R. (2007) Bridging the knowledge gaps in vaccine design. Nat Biotechnol 25, 1361–1366.PubMedCrossRefGoogle Scholar
  5. 5.
    Schijns, V. E. J. C., Degen, W. G. J. (2007) Vaccine immunopotentiators of the future. Clin Pharm Therap 82, 750–755.PubMedCrossRefGoogle Scholar
  6. 6.
    Guy, B. (2007) The perfect mix: recent progress in adjuvant research. Nat Microbiol 5, 505–517.CrossRefGoogle Scholar
  7. 7.
    Marciani, D. J. (2003) Vaccine adjuvants: role and mechanism of action in vaccine immunogenicity. Drugs Disc Today 8, 934–943.CrossRefGoogle Scholar
  8. 8.
    Schijns, V. E. J. C. (2001) Induction and direction of immune responses by vaccine adjuvants. Crit Rev Immunol 21, 75–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Janeway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54, 1–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Schijns, V. E. J. C., O’Hagan, D. (2006) Immunopotentiators in Modern Vaccines, Elsevier/Academic press, London.Google Scholar
  11. 11.
    Bretscher, P., Cohn, M. (1970) A theory of self-nonself discrimination. Science 169, 1042–1049.PubMedCrossRefGoogle Scholar
  12. 12.
    Lafferty, K. J., Cunningham, A. J. (1975) A new analysis of allogenic interactions. Aust J Exp Biol Med Sci 53, 27–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Itano, A. A., McSorley, S. J., Reinhardt, R. L., Ehst, B. D., Ingulli, E., Rudensky, A. Y., Jenkins, M. K. (2003) Distinct dendritic cell populations sequentially present antigen to Cd4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Mackay, C. R. (1993) Homining of naïve memory and effector lymphocytes. Curr Opin Immunol 5, 423–427.PubMedCrossRefGoogle Scholar
  15. 15.
    Butcher, E. C., Picker, L. J. (1996) Lymphocyte homing and homeostasis. Science 272, 60–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Zinkernagel, R. M., Ehl, S., Aichele, P., Oehen, S., Kundig, T., Hengartner, H. (1997) Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 156, 199–209.PubMedCrossRefGoogle Scholar
  17. 17.
    Freund, J. (1951) The effect of paraffin oil and mycobacteria on antibody formation and sensitization. Am J Clin Pathol 21, 645–656.PubMedGoogle Scholar
  18. 18.
    Karrer, U., Althage, A., Odermatt, B., Roberts, C. W. M., Korsmeyer, S. J., Miyawaki, S., Hengartner, H., Zinkernagel, R. M. (1997) On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11 –/– ) mutant mice. J Exp Med 185, 2157–2170.PubMedCrossRefGoogle Scholar
  19. 19.
    Frey, J. R., Wenk, P. (1957) Experimental studies on the pathogenesis of contact eczema in the guinea pig. Int Arch Allergy 11, 81–100.PubMedCrossRefGoogle Scholar
  20. 20.
    Barker, C. F., Billingham, R. E. (1967) The role of regional lymphatics in the skin homograft response. Transplantation 5, 962–975.PubMedCrossRefGoogle Scholar
  21. 21.
    Lascelles, A. K., Eagleson, G., Beh, K. J., Watson, D. L. (1989) Significance of Freund’s adjuvant/antigen injection granuloma in the maintenance of serum antibody response. Vet Immunol Immunopathol 22, 15–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Banchereau, J., Steinman, R. M. (1989) Dendritic cells and the control of immunity. Nature 392, 245–252.CrossRefGoogle Scholar
  23. 23.
    Herbert, W. J. (1966) Antigenicity of soluble protein in the presence of high levels of antibody: a possible mode of action of the antigen adjuvants. Nature 210, 747–748.PubMedCrossRefGoogle Scholar
  24. 24.
    Herbert, W. J. (1968) The mode of action of mineral-oil emulsion adjuvants on antibody production in mice. Immunology 14, 301–318.PubMedGoogle Scholar
  25. 25.
    Freund, J., Cascals, J., Hosmer, E. P. (1937) Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 37, 509–513.Google Scholar
  26. 26.
    Dupuis, M., Murphy, T. J., Higgins, D., Ugozzoli, M., van Nest, G., Ott, G., McDonald, D. M. (1998) Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol 186, 18–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Seubert, A., Monaci, E., Pizza, M., O‘Hagan, D. T., Wack, A. (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 80, 5402–5412.Google Scholar
  28. 28.
    Ramanathan, V. D., Badenoch-Jones, P., Turk, J. L. (1979) Complement activation by aluminium and zirconium compounds. Immunology 37, 881–888.PubMedGoogle Scholar
  29. 29.
    White, R. G., Coons, A. H., Connolly, J. M. (1955) Studies on antibody production. III. The alum granuloma. J Exp Med 102, 73–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Jr., Sutterwala, F. S., Flavell, R. A. (2008) Crucial role for the NAlp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126.PubMedCrossRefGoogle Scholar
  31. 31.
    Mckee, A. S., MacLeod, M., White, J., Crwaford, F., Kappler, J. W., Marrack, P. (2008) Gr1+IL-4-producing innate immune cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody production. Int Immunol 20, 659–669.PubMedCrossRefGoogle Scholar
  32. 32.
    Sun, H., Pollock, K. G., Brewer, J. M. (2003) Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21, 849–855.PubMedCrossRefGoogle Scholar
  33. 33.
    Kool, M., Soullie, T., Nimwegen van, M., Willart, M. A. M., Muskens, F., Jung, S., Hoogsteden, H. C., Hammad, H., Lambrecht, B. N. (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205, 869–982.PubMedCrossRefGoogle Scholar
  34. 34.
    Shi, Y., Evans, J. E., Rock, K. L. (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521.PubMedCrossRefGoogle Scholar
  35. 35.
    Li, H., Nookala, S., Re, F. (2007) Aluminium hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J Immunol 178, 5271–5276.PubMedGoogle Scholar
  36. 36.
    Sokolovska, A., Hem, S. L., HogenEsch, H. (2007) Activation of dendritic cells and induction of CD4+ T cell differentiation by aluminium-containing adjuvants. Vaccine 25, 4575–4585.PubMedCrossRefGoogle Scholar
  37. 37.
    Franchi, L., Nunez, G. (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated Il-1β secretion but dispensable for adjuvant activity. Eur J Immunol 38, 2085–2089.PubMedCrossRefGoogle Scholar
  38. 38.
    Gavin, A. L., Hoebe, K., Duong, B., Ota, T., Martin, C., Beutler, B., Nemanzee, D. (2006) Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science 314, 1936–1938.PubMedCrossRefGoogle Scholar
  39. 39.
    Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., Akira, S. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150.PubMedCrossRefGoogle Scholar
  40. 40.
    Pollock, K. G., Conacher, M., We, X. Q., Alexander, J., Brewer, J. M. (2003) Interleukin-18 plays a role in both the alum-induced T helper 2 response and the T helper 1 response induced by alum-adsorbed interleukin-12. Immunology 108, 137–143.PubMedCrossRefGoogle Scholar
  41. 41.
    Schmitz, N., Kurrer, M., Kopf, M. (2003) The IL-1receptor 1 is critical for Th2 cell type airway immune response in a mild but not a more severe asthma model. Eur J Immunol 33, 991–1000.PubMedCrossRefGoogle Scholar
  42. 42.
    McGuinness, D. H., Dehal, P. P., Pleass, R. J. (2003) Pattern recognition molecules and innate immunity to parasites. Trends Parasitol 19, 312–319.PubMedCrossRefGoogle Scholar
  43. 43.
    Trinchieri, G., Sher, A. (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179–190.PubMedCrossRefGoogle Scholar
  44. 44.
    Blander, J. M., Medzhitov, R. (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812.PubMedCrossRefGoogle Scholar
  45. 45.
    Agrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T., Pulendran, B. (2003) Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct TH responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 171, 4984–4989.PubMedGoogle Scholar
  46. 46.
    Sutmuller, R. P. M., Morgan, M. E., Netea, M. G., Grauer, O., Adema, G. J. (2006) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27, 387–393.PubMedCrossRefGoogle Scholar
  47. 47.
    Malherbe, L., Mark, L., Fazileau, N., McHeyzer-Williams, L. J., McHeyzer-Williams, M. G. (2008) Vaccine adjuvants alter TCR-based selection thresholds. Immunity 28, 698–709.PubMedCrossRefGoogle Scholar
  48. 48.
    Matzinger, P. (1994) Tolerance, danger and the extended family. Ann Rev Immunol 12, 991–1045.CrossRefGoogle Scholar
  49. 49.
    Ridge, J. P., Fuchs, E. J., Matzinger, P. (1996) Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271, 1723–1726.PubMedCrossRefGoogle Scholar
  50. 50.
    Gallucci, S., Lolkema, M., Matzinger, P. (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5, 1249–1255.PubMedCrossRefGoogle Scholar
  51. 51.
    Li, H., Willingham, S. B., Ting, J. P. -Y., Re, F. (2008) Inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181, 17–21.PubMedGoogle Scholar
  52. 52.
    Jegerlehner, A., Maurer, P., Bessa, J., Hinton, H. J., Kopf, M., Bachmann, M. F. (2007) TLR9 signaling in B cells determines class switch recombination to IgG2a. J Immunol 178, 2415–2420.PubMedGoogle Scholar
  53. 53.
    Taylor, C. E. (1995) Cytokines as adjuvants for vaccines: antigen-specific responses differ from polyclonal responses. Infect Immunity 63, 3241–3244.Google Scholar
  54. 54.
    Soler, E., Houdebine, L.-M. (2007) Preparation of recombinant vaccines. Biotechnol Ann Rev 13, 65–93.CrossRefGoogle Scholar
  55. 55.
    Proietti, E., Bracci, L., Puzelli, S., Di Pucchio, T., Sestili, P., De Vincenzi, E., Venditti, M., Capone, I., Seif, I., De Maeyer, E., Tough, D., Donatelli, I., Belardelli, F. (2002) Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J Immunol 169, 375–383.PubMedGoogle Scholar
  56. 56.
    Hatzifoti, C., Bacon, A., Marriott, H., Laing, P., Heath, A. W. (2008) Liposomal co-entrapment of CD40mAb induces enhanced IgG responses against bacterial polysaccharide and protein. PLoS ONE 3, e2368.PubMedCrossRefGoogle Scholar
  57. 57.
    Kusuhara, K., Madsen, K., Jensen, L., Hellsten, Y., Pilegaard, H. (2007) Calcium signaling in regulating PGC-1a, PDK4 and HKII mRNA expression. Biol Chem 388, 481–485.PubMedCrossRefGoogle Scholar
  58. 58.
    Netea, M. G., Sutmuller, R., Hermann, C., Van der Graaf, C. A., Van der Meer, J. W., van Krieken, J. H., Hartung, T., Adema, G., Kullberg, B. J. (2004) Toll-like receptor 1 suppresses immunity against Candida albicans through induction of IL10 and regulatory T cells. J Immunol 172, 3712–3718.PubMedGoogle Scholar
  59. 59.
    Jarnicki, A. G., Conroy, H., Brereton, C., Donnelly, G., Toomey, D., Walsh, K., Sweeney, C., Leavy, O., Fletcher, J., Lavelle, E. C., Dunne, P., Mills, K. H. (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180, 3797–3806.PubMedGoogle Scholar
  60. 60.
    Pedersen, A. E., Ronchese, F. (2007) CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion. J Immune Based Ther Vaccines 5, 9–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Sutmuller, R. P., van Duivenvoorde, L. M., van Elsas, A., Schumacher, T. N., Wildenberg, M. E., Allison, J. P., Toes, R. E., Offringa, R., Melief, C. J. (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194, 823–832.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cell Biology & ImmunologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations