Skip to main content

Affinity Peptidomics: Peptide Selection and Affinity Capture on Hydrogels and Microarrays

  • Protocol
  • First Online:
Book cover Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

Affinity peptidomics relies on the successfully proven approach used widely in mass-spectrometry-based protein analysis, where protein samples are proteolytically digested prior to the analysis. Unlike traditional proteomic analyses, affinity peptidomics employs affinity detection instead of, or in addition to, the mass-spectrometry detection. Affinity peptidomics, therefore, bridges the gap between protein microarrays and mass spectrometry and can be used for the detection, identification and quantification of endogenous or proteolytic peptides on microarrays and by MALDI-MS. Phage display technology is a widely applicable generic molecular display method suitable for studying protein–protein or protein–peptide interactions and the development of recombinant affinity reagents. Phage display complements the affinity peptidomics approach when the latter is used, e.g. to characterise a repertoire of antigenic determinants of polyclonal, monoclonal antibodies or other recombinantly obtained affinity reagents or in studying protein–protein interactions. 3D materials such as membrane-based porous substrates and acrylamide hydrogels provide convenient alternatives and are superior to many 2D surfaces in maintaining protein conformation and minimising non-specific interactions. Hydrogels have been found to be advantageous in performing antibody affinity assays and peptide-binding assays. Here we report a range of peptide selection and peptide-binding assays used for the detection, quantification or validation of peptide targets using array-based techniques and fluorescent or MS detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guschin, D., Yershov, G., Zaslavsky, A., Gemmell, A., Shick, V., Proudnikov, D., Arenkov, P. and Mirzabekov, A. (1997) Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem. 250, 203–211.

    Article  PubMed  CAS  Google Scholar 

  2. Vasiliskov, A.V., Timofeev, E.N., Surzhikov, S.A., Drobyshev, A.L., Shick, V.V. and Mirzabekov, A.D. (1999) Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization. Biotechniques 27, 592–594.

    PubMed  CAS  Google Scholar 

  3. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H. and Walter, G. (1999) Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111.

    Article  PubMed  CAS  Google Scholar 

  4. MacBeath, G. and Schreiber, S.L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  5. de Wildt, R.M., Mundy, C.R., Gorick, B.D. and Tomlinson, I.M. (2000) Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat. Biotechnol. 18, 989–994.

    Article  PubMed  Google Scholar 

  6. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V. and Mirzabekov, A. (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131.

    Article  PubMed  CAS  Google Scholar 

  7. Soloviev, M., Barry, R. and Terrett, J. (2004) Chip based proteomics technology, in Molecular Analysis and Genome Discovery (Rapley R., Harbron S., ed.), John Wiley and Sons Ltd, New York, pp. 217–249.

    Google Scholar 

  8. Scrivener, E., Barry, R., Platt, A., Calvert, R., Masih, G., Hextall, P., Soloviev, M. and Terrett, J. (2003) Peptidomics: a new approach to affinity protein microarrays. Proteomics 3, 122–128.

    Article  PubMed  CAS  Google Scholar 

  9. Barry, R. and Soloviev, M. (2004) Peptidomics approaches to proteomics research. BIOforum Eur. 1, 34–36.

    Google Scholar 

  10. Soloviev, M. and Finch, P. (2005) Peptidomics, current status. J. Chromatogr. B. 815, 11–24.

    Article  CAS  Google Scholar 

  11. Soloviev, M. and Terrett, J. (2005) Practical guide to protein microarrays: assay systems, methods and algorithms, in Protein Microarrays (Schena M., ed.), Jones and Bartlett Publishers, Boston, MA, pp. 43–56.

    Google Scholar 

  12. Clarckson, T., Hoogenboom, H.R., Griffiths, A.D. and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  Google Scholar 

  13. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wolle, J., Pluckthun, A. and Virnekas, B. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL). J. Mol. Biol. 296, 57–86.

    PubMed  CAS  Google Scholar 

  14. Binz, K.H. and Plückthun, A. (2005) Engineered proteins as specific binding reagents. Curr. Opin. Biotechnol. 16, 459–469.

    Article  PubMed  CAS  Google Scholar 

  15. Messmer, B.T., Benham, C.J. and Thaler, D.S. (2000) Sequential determination of ligands binding to discrete components in heterogeneous mixtures by iterative panning and blocking (IPAB). J. Mol. Biol. 296, 821–832.

    Article  PubMed  CAS  Google Scholar 

  16. Kay, B.K., Kasanov, J. and Yamabhai, M. (2001) Screening phage-displayed combinatorial peptide libraries. Methods 24, 240–246.

    Article  PubMed  CAS  Google Scholar 

  17. Noren, K.A. and Noren, C.J. (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23, 169–178.

    Article  PubMed  CAS  Google Scholar 

  18. Smith, G.P. (1985) Filamentous fusion phage: novel expression vectors that display clones antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  19. Ditzel, H.J., Barbas, S.M., Barbas, C.F., 3rd and Burton, D.R. (1994) The nature of the autoimmune antibody repertoire in human immunodeficiency virus type 1 infection. Proc. Natl Acad. Sci. USA. 91, 3710–3714.

    Article  PubMed  CAS  Google Scholar 

  20. Scott, J.K. and Smith, G.P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.

    Article  PubMed  CAS  Google Scholar 

  21. Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl Acad. Sci. USA. 87, 6378–6382.

    Article  PubMed  CAS  Google Scholar 

  22. Devlin, J.J., Panganiban, L.C. and Devlin, P.E. (1990) Random peptide libraries: a source of specific protein binding molecules. Science. 249, 404–406.

    Article  PubMed  CAS  Google Scholar 

  23. Barry, R., Scrivener, E., Soloviev, M. and Terrett, J. (2002) Chip-based proteomics technologies. Int. Genomic Proteomic Technol. Feb, 14–22.

    CAS  Google Scholar 

  24. Quanjun, L., Wei, Z., Hong, W., Jujun, Z., Yujie, Z. and Zuhong, L. (2002) Detection YMDD mutation of HBV with a polyacrylamide film immobilized molecular beacon array. 8th International conference on Electronic Materials, IUMRS-ICEM 2002, Xi’an, China, pp. 387–39.2

    Google Scholar 

  25. Brueggemeier, S.B., Kron, S.J. and Palecek, S.P. (2004) Use of protein-acrylamide copolymer hydrogels for measuring protein concentration and activity. Anal. Biochem. 329, 180–189.

    Article  PubMed  CAS  Google Scholar 

  26. Burnham, M.R., Turner, J.N., Szarowski, D. and Martin, D.L. (2006) Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials 27, 5883–5891.

    Article  PubMed  CAS  Google Scholar 

  27. Salata, O. (2007) Nanotechnology in therapeutics: hydrogels and beyond. J. Nanobiotechnol. 5, 5.

    Article  Google Scholar 

  28. Jacchetti, E., Emilitri, E., Rodighiero, S., Indrieri, M., Gianfelice, A., Lenardi, C., Podestà, A., Ranucci, E., Ferruti, P. and Milani, P. (2008) Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture. J. Nanobiotechnol. 6, 14.

    Article  Google Scholar 

  29. Tang, J. and Xiao, P. (2009) Polymerizing immobilization of acrylamide-modified nucleic acids and its application. Biosens. Bioelectron. 24, 1817–1824.

    Article  PubMed  CAS  Google Scholar 

  30. Barbas, C.F., 3rd, Kang, A.S., Lerner, R.A. and Benkovic, S.J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl Acad. Sci. USA. 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  31. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P. and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  32. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H.R., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gherardy, E. and Winter, G. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  33. Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J. and Johnson, K.S. (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.

    Article  PubMed  CAS  Google Scholar 

  34. Rai, A.J., Gelfand, C.A., Haywood, B.C., Warunek, D.J., Yi, J., Schuchard, M.D., Mehigh, R.J., Cockrill, S.L., Scott, G.B., Tammen, H., Schulz-Knappe, P., Speicher, D.W., Vitzthum, F., Haab, B.B., Siest, G. and Chan, D.W. (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5, 3262–3277.

    Article  PubMed  CAS  Google Scholar 

  35. Barry, R., Diggle, T., Terrett, J. and Soloviev, M. (2003) Competitive assay formats for high-throughput affinity arrays. J. Biomol. Screen. 8, 257–263.

    Article  PubMed  CAS  Google Scholar 

  36. Heo, J. and Crooks, R.M. (2005) Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. Anal. Chem. 77, 6843–6851.

    Article  PubMed  CAS  Google Scholar 

  37. Zubtsov, D.A., Savvateeva, E.N., Rubina, A.Y., Pan’kov, S.V., Konovalova, E.V., Moiseeva, O.V., Chechetkin, V.R. and Zasedatelev, A.S. (2007) Comparison of surface and hydrogel-based protein microchips. Anal. Biochem. 368, 205–213.

    Article  PubMed  CAS  Google Scholar 

  38. Thomas, G., El-Giar, E.M., Locascio, L.E. and Tarlov, M.J. (2006) Hydrogel-immobilized antibodies for microfluidic immunoassays: hydrogel immunoassay. Methods Mol. Biol. 321, 83–95.

    PubMed  CAS  Google Scholar 

  39. Parker, L.L., Brueggemeier, S.B., Rhee, W.J., Wu, D., Kent, S.B., Kron, S.J. and Palecek, S.P. (2006) Photocleavable peptide hydrogel arrays for MALDI-TOF analysis of kinase activity. Analyst 131, 1097–1104.

    Article  PubMed  CAS  Google Scholar 

  40. Rubina, A.Y., Dyukova, V.I., Dementieva, E.I., Stomakhin, A.A., Nesmeyanov, V.A., Grishin, E.V. and Zasedatelev, A.S. (2005) Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Anal. Biochem. 340, 317–329.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka, H., Hanasaki, M., Isojima, T., Takeuchi, H., Shiroya, T. and Kawaguchi, H. (2009) Enhancement of sensitivity of SPR protein microarray using a novel 3D protein immobilization. Colloids Surf. B Bioint. 70, 259–265.

    Article  CAS  Google Scholar 

  42. Dyukova, V.I., Dementieva, E.I., Zubtsov, D.A., Galanina, O.E., Bovin, N.V. and Rubina, A.Y. (2005) Hydrogel glycan microarrays. Anal. Biochem. 347, 94–105.

    Article  PubMed  CAS  Google Scholar 

  43. Charles, P.T., Taitt, C.R., Goldman, E.R., Rangasammy, J.G. and Stenger, D.A. (2004) Immobilization strategy and characterization of hydrogel-based thin films for interrogation of ligand binding with staphylococcal enterotoxin B (SEB) in a protein microarray format. Langmuir 20, 270–272.

    Article  PubMed  CAS  Google Scholar 

  44. Hofmann, H.J. and Hädge, D. (1987) On the theoretical prediction of protein antigenic determinants from amino acid sequences. Biomed. Biochim. Acta 46, 855–866.

    PubMed  CAS  Google Scholar 

  45. Pellequer, J.L. and Westhof, E. (1993) PREDITOP: a program for antigenicity prediction. J. Mol. Graph. 11, 204–210.

    Article  PubMed  CAS  Google Scholar 

  46. Ponomarenko, J.V. and Bourne, P.E. (2007) Antibody–protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct. Biol. 7, 64.

    Article  PubMed  Google Scholar 

  47. Flower, D.R. (2007) Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol. Biol. 409, 1–15.

    Article  PubMed  CAS  Google Scholar 

  48. El-Manzalawy, Y., Dobbs, D. and Honavar, V. (2008) Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 21, 243–255.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, J., Liu, H., Yang, J. and Chou, K.C. (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33, 423–428.

    Article  PubMed  CAS  Google Scholar 

  50. Ponomarenko, J., Bui, H.H., Li, W., Fusseder, N., Bourne, P.E., Sette, A. and Peters, B. (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9, 514.

    Article  PubMed  Google Scholar 

  51. Van Regenmortel, M.H. and Pellequer, J.L. (1994) Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem?. Pept. Res. 7, 224–228.

    PubMed  Google Scholar 

  52. Hopp, T.P. and Woods, K.R. (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl Acad. Sci. USA. 78, 3824–3828.

    Article  PubMed  CAS  Google Scholar 

  53. Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–312.

    Article  PubMed  CAS  Google Scholar 

  54. Hopp, T.P. (1993) Retrospective: 12 years of antigenic determinant predictions, and more. Pept. Res. 6, 183–190.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, F., Dulneva, A., Bailes, J., Soloviev, M. (2010). Affinity Peptidomics: Peptide Selection and Affinity Capture on Hydrogels and Microarrays. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics