Advertisement

Peptidomics pp 207-216 | Cite as

Peptidome Analysis of Mouse Liver Tissue by Size Exclusion Chromatography Prefractionation

  • Lianghai Hu
  • Mingliang Ye
  • Hanfa Zou
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 615)

Abstract

Here we report our approach to the peptidomic analysis of mouse liver. We use ultrafiltration for peptide prefractionation, which is followed by size exclusion chromatography. The low molecular weight peptides (MW below ~3 kDa) are analysed directly by nanoLC-MS/MS, and the higher molecular weight peptides (MW above ~3 kDa) are characterized with MALDI-TOF MS first and then proteolytically digested prior to nanoLC-MS/MS analyses.

Key words

Mouse liver peptidomics ultrafiltration size exclusion chromatography multidimensional separation mass spectrometry 

Notes

Acknowledgments

This work was supported by National Natural Sciences Foundation of China (No. 20735004), the China High Technology Research Program Grant (2006AA02A309) and the Knowledge Innovation program of DICP to H. Zou.

References

  1. 1.
    Washburn, M.P., Wolters, D. and Yates, J.R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.PubMedCrossRefGoogle Scholar
  2. 2.
    Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  3. 3.
    Ludwig, J.A. and Weinstein, J.N. (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856.PubMedCrossRefGoogle Scholar
  4. 4.
    Novak, K. (2006) Biomarkers: Taking out the trash. Nat. Rev. Cancer 6, 92.CrossRefGoogle Scholar
  5. 5.
    Soloviev, M. and Finch, P. (2006) Peptidomics: Bridging the gap between proteome and metabolome. Proteomics 6, 744–747.PubMedCrossRefGoogle Scholar
  6. 6.
    Schrader, M. and Schulz-Knappe, P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60.PubMedCrossRefGoogle Scholar
  7. 7.
    Svensson, M., Skold, K., Svenningsson, P. and Andren, P.E. (2003) Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2, 213–219.PubMedCrossRefGoogle Scholar
  8. 8.
    Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C. and Liotta, L.A. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.PubMedCrossRefGoogle Scholar
  9. 9.
    Villanueva, J., Philip, J., Entenberg, D., Chaparro, C.A., Tanwar, M.K., Holland, E.C. and Tempst, P. (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570.PubMedCrossRefGoogle Scholar
  10. 10.
    Skold, K., Svensson, M., Kaplan, A., Bjorkesten, L., Astrom, J. and Andren, P.E. (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2, 447–454.PubMedCrossRefGoogle Scholar
  11. 11.
    Fricker, L.D., Lim, J.Y., Pan, H. and Che, F.Y. (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev. 25, 327–344.PubMedCrossRefGoogle Scholar
  12. 12.
    Minamino, N., Tanaka, J., Kuwahara, H., Kihara, T., Satomi, Y., Matsubae, M. and Takao, T. (2003) Determination of endogenous peptides in the porcine brain: possible construction of Peptidome, a fact database for endogenous peptides. J. Chromatogr. B 792, 33–48.CrossRefGoogle Scholar
  13. 13.
    Liotta, L.A. and Petricoin, E.F. (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest. 116, 26–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Cottingham, K. (2006) Speeding up biomarker discovery. J. Proteome Res. 5, 1047–1048.CrossRefGoogle Scholar
  15. 15.
    Traub, F., Jost, M., Hess, R., Schorn, K., Menzel, C., Budde, P., Schulz-Knappek, P., Lamping, N., Pich, A., Kreipe, H. and Tammen, H. (2006) Peptidomic analysis of breast cancer reveals a putative surrogate marker for estrogen receptor-negative carcinomas. Lab. Invest. 86, 246–253.PubMedCrossRefGoogle Scholar
  16. 16.
    He, F.C. (2005) Human Liver Proteome Project – Plan, progress, and perspectives. Mol. Cell. Proteomics 12, 1841–1848.Google Scholar
  17. 17.
    Hu, L.H., Li, X., Jiang, X.N., Jiang, X.G., Zhou, H.J., Kong, L., Ye, M.L. and Zou, H.F. (2007) Comprehensive peptidome analysis of mouse livers by size exclusion chromatography prefractionation and NanoLC-MS/MS identification. J. Proteome Res. 6, 801–808.PubMedCrossRefGoogle Scholar
  18. 18.
    Falth, M., Skold, K., Norrman, M., Svensson, M., Fenyo, D. and Andren, P.E. (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005.PubMedCrossRefGoogle Scholar
  19. 19.
    Baggerman, G., Verleyen, P., Clynen, E., Huybrechts, J., De Loof, A. and Schoofs, L. (2004) Peptidomics. J. Chromatogr. B 803, 3–16.CrossRefGoogle Scholar
  20. 20.
    Peng, J.M., Elias, J.E., Thoreen, C.C., Licklider, L.J. and Gygi, S.P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Xie, H., Bandhakavi, S. and Griffin, T.J. (2005) Evaluating preparative isoelectric focusing of complex peptide mixtures for tandem mass spectrometry-based proteomics: a case study in profiling chromatin-enriched subcellular fractions in Saccharomyces cerevisiae. Anal. Chem. 77, 3198–3207.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lianghai Hu
    • 1
  • Mingliang Ye
    • 1
  • Hanfa Zou
    • 1
  1. 1.Key Laboratory of Separation Science for Analytical ChemistryNational Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina

Personalised recommendations