Peptidomics pp 191-206 | Cite as

Identification and Relative Quantification of Neuropeptides from the Endocrine Tissues

  • Kurt Boonen
  • Steven J. Husson
  • Bart Landuyt
  • Geert Baggerman
  • Eisuke Hayakawa
  • Walter H.M.L. Luyten
  • Liliane Schoofs
Part of the Methods in Molecular Biology book series (MIMB, volume 615)


Endocrine tissues like the pituitary, hypothalamus and islets of Langerhans are rich in bioactive peptides. These are used for intercellular signalling and are involved in regulation of almost all physiological processes. Peptidomics is the comprehensive analysis of peptides in tissues, fluids and cells. Peptidomics applied to (neuro-)endocrine tissues aims therefore to identify as many bioactive peptides as possible. Peptidomics of (neuro-)endocrine tissues requires an integrated approach that consists of careful sample handling, peptide separation techniques, mass spectrometry and bioinformatics. Here we describe the methods for isolation and dissection of endocrine tissues, the extraction of bioactive peptides and further sample handling and identification of peptides by mass spectrometry and hyphenated techniques. We also present a straightforward method for the comparison of relative levels of bioactive peptides in these endocrine tissues under varying physiological conditions. The latter helps to elucidate functions of the bioactive peptides.

Key words

Neuropeptide Mus musculus peptidomics pituitary hypothalamus islets of Langerhans endocrine pancreas MALDI-TOF/TOF MS Q-TOF MS two-dimensional HPLC nanoLC 



K. Boonen and B. Landuyt are supported by grants of Institute for the Promotion of Innovation through Science and Technology (I.W.T.)-Flanders. S. J. Husson is a postdoctoral fellow of the Research Foundation Flanders (F.W.O.-Vlaanderen). The authors also acknowledge the Interfacultary Centre for Proteomics and Metabolomics “Prometa”, K.U. Leuven.


  1. 1.
    Strand, F.L. (1999) Neuropeptides. Cambridge, The MITT Press.Google Scholar
  2. 2.
    Hökfelt, T., Bartfai, T. and Bloom, F. (2003) Neuropeptides: opportunities for drug discovery. Lancet Neurol. 2, 463–472.PubMedCrossRefGoogle Scholar
  3. 3.
    Fricker, L.D. (2005) Neuropeptide-processing enzymes: applications for drug discovery. AAPS J. 7, E449–E455.PubMedCrossRefGoogle Scholar
  4. 4.
    Boonen, K., Landuyt, B., Baggerman, G., Husson, S.J., Huybrechts, J. and Schoofs, L. (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J. Sep. Sci. 31, 427–445.PubMedCrossRefGoogle Scholar
  5. 5.
    Soloviev, M. and Finch, P. (2005) Peptidomics, current status. 2. J. Chromatogr B. Analyt. Technol. Biomed. Life Sci. 815, 11–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Ivanov, V.T. and Yatskin, O.N. (2005) Peptidomics: a logical sequel to proteomics. Expert Rev. Proteomics. 2, 463–473.PubMedCrossRefGoogle Scholar
  7. 7.
    Svensson, M., Sköld, K., Nilsson, A., Fälth, M., Svenningsson, P. and Andrén, P.E. (2007) Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans. 35, 588–593.PubMedCrossRefGoogle Scholar
  8. 8.
    Desiderio, D.M. (1996) Mass spectrometry, high performance liquid chromatography, and brain peptides. Biopolymers. 40, 257–264.PubMedCrossRefGoogle Scholar
  9. 9.
    Baggerman, G., Cerstiaens, A., De Loof, A. and Schoofs, L. (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J. Biol. Chem. 277, 40368–40374.PubMedCrossRefGoogle Scholar
  10. 10.
    Clynen, E., Baggerman, G., Veelaert, D., Cerstiaens, A., Van der Horst, D., Harthoorn, L., et al. (2001) Peptidomics of the pars intercerebralis–corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268, 1929–1939.PubMedCrossRefGoogle Scholar
  11. 11.
    Predel, R. and Gäde, G. (2002) Identification of the abundant neuropeptide from abdominal perisympathetic organs of locusts. Peptides 23, 621–627.PubMedCrossRefGoogle Scholar
  12. 12.
    Minamino, N., Tanaka, J., Kuwahara, H., Kihara, T., Satomi, Y., Matsubae, M., et al. (2003) Determination of endogenous peptides in the porcine brain: possible construction of peptidome, a fact database for endogenous peptides. J. Chromatogr B. Analyt. Technol. Biomed. Life Sci. 792, 33–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Sköld, K., Svensson, M., Kaplan, A., Björkesten, L., Aström, J. and Andren, P.E. (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2, 447–454.PubMedCrossRefGoogle Scholar
  14. 14.
    Che, F.Y., Yan, L., Li, H., Mzhavia, N., Devi, L.A. and Fricker, L.D. (2001) Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice. Proc. Natl. Acad. Sci. USA 98, 9971–9976.PubMedCrossRefGoogle Scholar
  15. 15.
    Svensson, M., Sköld, K., Svenningsson, P. and Andren, P.E. (2003) Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2, 213–219.PubMedCrossRefGoogle Scholar
  16. 16.
    Che, F.Y., Lim, J., Pan, H., Biswas, R. and Fricker, L.D. (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol. Cell. Proteomics. 4, 1391–1405.PubMedCrossRefGoogle Scholar
  17. 17.
    Boonen, K., Husson, S.J., Baggerman, G., Cerstiaens, A., Luyten, W. and Schoofs, L. (2008) Peptidomics in neuroendocrine research: A Caenorhabditis elegans and Mus musculus study. In: Peptidomics: Methods and Applications, pp 355–386. Wiley, Hoboken, New Jersey.Google Scholar
  18. 18.
    Dowell, J.A., Heyden, W.V. and Li, L. (2006) Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: Enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J. Proteome Res. 5, 3368–3375.PubMedCrossRefGoogle Scholar
  19. 19.
    Boonen, K., Baggerman, G., D‘Hertog, W., Husson, S.J., Overbergh, L., Mathieu, C., et al. (2007) Neuropeptides of the islets of Langerhans: a peptidomics study. Gen. Comp. Endocrinol. 152, 231–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Conlon, J.M. (1997) Preparation of neuropeptide-containing fractions from biological materials. In: Neuropeptide Protocols, pp 1–8. Humana Press, Totowa, New Jersey.Google Scholar
  21. 21.
    Che, F.Y., Zhang, X., Berezniuk, I., Callaway, M., Lim, J. and Fricker, L.D. (2007) Optimization of neuropeptide extraction from the mouse hypothalamus. J. Proteome Res. 6, 4667–4676.PubMedCrossRefGoogle Scholar
  22. 22.
    Cutillas, P.R. (2008) Quantification of polypeptides by mass spectrometry. In: Peptidomics: Methods and Applications, pp 291–316. Wiley, Hoboken, New Jersey.Google Scholar
  23. 23.
    Johansson, C., Samskog, J., Sundström, L., Wadensten, H., Björkesten, L. and Flensburg, J. (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6, 4475–4485.PubMedCrossRefGoogle Scholar
  24. 24.
    Chapman, J.R. (ed.) (2000) Methods in molecular biology: Mass spectrometry of proteins and peptides. Humana Press, New Jersey.Google Scholar
  25. 25.
    Liu, F., Baggerman, G., Schoofs, L. and Wets, G. (2008) Construction of a database of signalling peptides in Metazoa. J. Proteome Res. 7, 4119–4131.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kurt Boonen
    • 1
  • Steven J. Husson
    • 2
  • Bart Landuyt
    • 1
  • Geert Baggerman
    • 3
  • Eisuke Hayakawa
    • 1
  • Walter H.M.L. Luyten
    • 4
  • Liliane Schoofs
    • 1
  1. 1.Functional Genomics and Proteomics Research Unit, Department of BiologyK.U. LeuvenLeuvenBelgium
  2. 2.Functional Genomics and Proteomics, Department of BiologyK.U. LeuvenLeuvenBelgium
  3. 3.ProMeta, Interfacultary Center for Proteomics and Metabolomics, K.U. LeuvenDiepenbeekBelgium
  4. 4.Department Woman and Child, Faculty of MedicineK.U.LeuvenLeuvenBelgium

Personalised recommendations