Advertisement

Peptidomics: Divide et Impera

  • Mikhail Soloviev
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 615)

Abstract

The term “peptidomics” can be defined as the systematic analysis of the peptide content within a cell, organelle, tissue or organism. The science of peptidomics usually refers to the studies of naturally occurring peptides. Another meaning refers to the peptidomics approach to protein analysis. An ancient Roman strategy divide et impera (divide and conquer) reflects the essence of peptidomics. Most effort in this field is spent purifying and dividing the peptidomes, which consist of tens, hundreds or sometimes thousands of functional peptides, followed by their structural and functional characterisation. This chapter introduces the concept of peptidomics, outlines the range of methodologies employed and describes key targets – the peptide groups which are often sought after in such studies.

Key words

Peptidomic peptidome peptide functional peptide methods 

References

  1. 1.
    Chervet, J.P., Ursem, M., and Salzmann, J.B. (1996) Instrumental requirements for nanoscale liquid chromatography. Anal. Chem. 68, 1507–1512.PubMedCrossRefGoogle Scholar
  2. 2.
    Quadroni, M. and James, P. (1999) Proteomics and automation. Electrophoresis 20, 664–677.PubMedCrossRefGoogle Scholar
  3. 3.
    Schrader, M. and Schulz-Knappe, P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60.PubMedCrossRefGoogle Scholar
  4. 4.
    Verhaert, P., Vandesande, F., and De Loof, A. (1999) Automated analysis of the peptidome. No longer science fiction. In: 2nd International Seminar on the Enabling Role of MS in Manchester.Google Scholar
  5. 5.
    Verhaert, P., Uttenweiler-Joseph, S., de Vries, M., Loboda, A., Ens, W., and Standing, K.G. (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1, 118–131.PubMedCrossRefGoogle Scholar
  6. 6.
    Schulz-Knappe, P., Zucht, H.D., Heine, G., Jürgens, M., Hess, R., and Schrader, M. (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen 4, 207–217.PubMedGoogle Scholar
  7. 7.
    Clynen, E., Baggerman, G., Veelaert, D., Cerstiaens, A., Van der Horst, D., Harthoorn, L., Derua, R., Waelkens, E., De Loof, A., and Schoofs, L. (2001) Peptidomics of the pars intercerebralis–corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268, 1929–1939.PubMedCrossRefGoogle Scholar
  8. 8.
    Scrivener, E., Barry, R., Platt, A., Calvert, R., Masih, G., Hextall, P., Soloviev, M., and Terrett, J. (2003) Peptidomics: a new approach to affinity protein microarrays. Proteomics 3, 122–128.PubMedCrossRefGoogle Scholar
  9. 9.
    Barry, R., Diggle, T., Terrett, J., and Soloviev, M. (2003) Competitive assay formats for high-throughput affinity arrays. J. Biomol. Screen. 8, 257–263.PubMedCrossRefGoogle Scholar
  10. 10.
    Barry, R. and Soloviev, M. (2004) Quantitative protein profiling using antibody arrays. Proteomics 4, 3717–3726.PubMedCrossRefGoogle Scholar
  11. 11.
    Community Trade Mark No. 001274646; http://oami.europa.eu
  12. 12.
    Marko-Varga, G., Nilsson, J., and Laurell, T. (2003) New directions of miniaturization within the proteomics research area. Electrophoresis 24, 3521–3532.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoa, X.D., Kirk, A.G., and Tabrizian, M. (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151–160.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurosawa, S., Aizawa, H., Tozuka, M., Nakamura, M., and Park, J.W. (2003) Immunosensors using a quartz crystal microbalance. Meas. Sci. Technol. 14, 1882–1887.CrossRefGoogle Scholar
  15. 15.
    Lion, N., Rohner, T.C., Dayon, L., Arnaud, I.L., Damoc, E., Youhnovski, N., Wu, Z.Y., Roussel, C., Josserand, J., Jensen, H., Rossier, J.S., Przybylski, M., and Girault, H.H. (2003) Microfluidic systems in proteomics. Electrophoresis 24, 3533–3562.PubMedCrossRefGoogle Scholar
  16. 16.
    Lion, N., Reymond, F., Girault, H.H., and Rossier, J.S. (2004) Why the move to microfluidics for protein analysis?. Curr. Opin. Biotechnol. 15, 31–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Soloviev, M. and Finch, P. (2005) Peptidomics, current status. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 815, 11–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.PubMedCrossRefGoogle Scholar
  19. 19.
    DeSouza, L., Diehl, G., Rodrigues, M.J., Guo, J., Romaschin, A.D., Colgan, T.J., and Siu, K.W. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377–386.PubMedCrossRefGoogle Scholar
  20. 20.
    Soloviev, M., Barry, R., Scrivener, E., and Terrett, J. (2003) Combinatorial peptidomics: a generic approach for protein expression profiling. J. Nanobiotechnol. 1, 4.CrossRefGoogle Scholar
  21. 21.
    Rash, L.D. and Hodgson, W.C. (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40, 225–254.PubMedCrossRefGoogle Scholar
  22. 22.
    Perumal, J., Filippi, M., Ford, C., Johnson, K., Lisak, R., Metz, L., Tselis, A., Tullman, M., and Khan, O. (2006) Glatiramer acetate therapy for multiple sclerosis: a review. Expert Opin. Drug Metab. Toxicol. 2, 1019–1029.PubMedCrossRefGoogle Scholar
  23. 23.
    Adermann, K., John, H., Ständker, L., and Forssmann, W.G. (2004) Exploiting natural peptide diversity: novel research tools and drug leads. Curr. Opin. Biotechnol. 15, 599–606.PubMedCrossRefGoogle Scholar
  24. 24.
    Zimmerman, L.J., Wernke, G.R., Caprioli, R.M., and Liebler, D.C. (2005) Identification of protein fragments as pattern features in MALDI-MS analyses of serum. J. Proteome Res. 4, 1672–1680.PubMedCrossRefGoogle Scholar
  25. 25.
    Vidal, B.C., Bonventre, J.V., and I-Hong Hsu, S. (2005) Towards the application of proteomics in renal disease diagnosis. Clin. Sci. (Lond). 109, 421–430.CrossRefGoogle Scholar
  26. 26.
    Desjardins, M., Houde, M., and Gagnon, E. (2005) Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol. Rev. 207, 158–165.PubMedCrossRefGoogle Scholar
  27. 27.
    Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R., and Wearsch, P.A. (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157.PubMedCrossRefGoogle Scholar
  28. 28.
    Van der Merwe, P.A. and Davis, S.J. (2003) Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684.PubMedCrossRefGoogle Scholar
  29. 29.
    Metzger, J., Schanstra, J.P., and Mischak, H. (2009) Capillary electrophoresis-mass spectrometry in urinary proteome analysis: current applications and future developments. Anal. Bioanal. Chem. 393, 1431–1442.PubMedCrossRefGoogle Scholar
  30. 30.
    Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., and Erspamer, V. (2002) The tachykinin peptide family. Pharmacol. Rev. 54, 285–322.PubMedCrossRefGoogle Scholar
  31. 31.
    Miller, M.B. and Bassler, B.L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199.PubMedCrossRefGoogle Scholar
  32. 32.
    Gibbs, R.A. (2005) Trp modification signals a quorum. Nat. Chem. Biol. 1, 7–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalkum, M., Lyon, G.J., and Chait, B.T. (2003) Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 2795–2800.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Royal Holloway University of London, School of Biological SciencesEghamUK

Personalised recommendations