Skip to main content

Integrase Defective, Nonintegrating Lentiviral Vectors

  • Protocol
  • First Online:
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

Lentiviral vectors are a powerful tool for gene transfer into target cells in vitro and in vivo. However, there are concerns about safety with regard to their use in gene transfer protocols because of insertional mutagenesis following viral infection. Once in the target cells, and in addition to the integrated proviral DNA, lentiviral vectors produce episomal forms of DNA (E-DNA), which are transcriptionally active. Therefore, one strategy to improve safety would envision the block integration of the lentiviral vector while allowing production of E-DNA. Such nonintegrating lentiviral vectors can be produced by introducing mutations in the Integrase (IN) protein of the parental packaging vector. These vectors are fundamentally different from the parental IN competent counterpart, thus opening new avenues for this class of lentiviral vectors as a new gene delivery system for gene therapy strategies, vaccination protocols and as a tool for anti-Integrase drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiznerowicz, M., and Trono, D. (2005) Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol. 23, 42-7.

    Article  PubMed  CAS  Google Scholar 

  2. Hematti, P., Hong, B. K., Ferguson, C., Adler, R., Hanawa, H., Sellers, S., Holt, I. E., Eckfeldt, C. E., Sharma, Y., Schmidt, M., von Kalle, C., Persons, D.A., Billings, E. M., Verfaillie, C. M., Nienhuis, A. W., Wolfsberg, T. G., Dunbar, C. E., and Calmels, B. (2004) Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2, e423.

    Article  Google Scholar 

  3. Mitchell, R. S., Beitzel, B. F., Schroder, A. R., Shinn, P., Chen, H., Berry, C. C., Ecker, J. R., and Bushman, F. D. (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, e234.

    Article  Google Scholar 

  4. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. L., Fraser, C. C., Cavazzana-Calvo, M., and Fischer, A. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255-6.

    Article  PubMed  Google Scholar 

  5. Cara, A., and Klotman, M. E. (2006) Retroviral E-DNA: persistence and gene expression in nondividing immune cells. J. Leukoc. Biol. 80, 1013-17.

    Article  PubMed  CAS  Google Scholar 

  6. Cara, A., Vargas, J. Jr., Keller, M., Jones, S., Mosoian, A., Gurtman, A., Cohen, A., Parkas, V., Wallach, F., Chusid, E., Gelman, I.H., and Klotman, M.E. (2002) Circular viral DNA and anomalous junction sequence in PBMC of HIV-infected individuals with no detectable plasma HIV RNA. Virology. 292, 1-5.

    Article  PubMed  CAS  Google Scholar 

  7. Cara, A., and Reitz, M. S., Jr. (1997) New insight on the role of extrachromosomal retroviral DNA. Leukemia 11, 1395-99.

    Article  PubMed  CAS  Google Scholar 

  8. Shoemaker, C., Goff, S., Gilboa, E., Paskind, M., Mitra, S. W., and Baltimore, D. (1980) Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc. Natl. Acad. Sci. USA 77, 3932-36.

    Article  PubMed  CAS  Google Scholar 

  9. Farnet, C. M., and Haseltine, W. A. (1991) Circularization of human immunodeficiency virus type 1 DNA in vitro. J. Virol. 65, 6942-52.

    PubMed  CAS  Google Scholar 

  10. Miller, M. D., Wang, B., and Bushman, F. D. (1995) Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J. Virol. 69, 3938-44.

    PubMed  CAS  Google Scholar 

  11. Saenz, D. T., Loewen, N., Peretz, M., Whitwam, T., Barraza, R., Howell, K. G., Holmes, J. M., Good, M., and Poeschla, E. M. (2004) Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J. Virol. 78, 2906-20.

    Article  PubMed  CAS  Google Scholar 

  12. Cornu, T. I., and Cathomen, T. (2007) Targeted genome modifications using integrase-deficient lentiviral vectors. Mol. Ther. 15, 2107-13.

    Article  PubMed  CAS  Google Scholar 

  13. Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., Ando, D., Urnov, F. D., Galli, C., Gregory, P. D., Holmes, M. C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298-306.

    Article  PubMed  CAS  Google Scholar 

  14. Vargas, J. Jr., Gusella, G. L., Najfeld, V., Klotman, M. E., and Cara, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum. Gene Ther. 15, 361-72.

    Article  PubMed  CAS  Google Scholar 

  15. Vargas, J. Jr., Klotman, M.E., and Cara, A. (2008) Conditionally replicating lentiviral-hybrid episomal vectors for suicide gene therapy. Antiviral Res. 80, 288-94.

    Article  PubMed  CAS  Google Scholar 

  16. Negri, D. R., Michelini, Z., Baroncelli, S., Spada, M., Vendetti, S., Buffa, V., Bona, R., Leone, P., Klotman, M. E., and Cara, A. (2007) Successful immunization with a single injection of non-integrating lentiviral vector. Mol. Ther. 15, 1716-23.

    Article  PubMed  CAS  Google Scholar 

  17. Coutant, F., Frenkiel, M.P., Despres, P., and Charneau, P. (2008) Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine. PLoS ONE. 3, e3973.

    Article  Google Scholar 

  18. Yáñez-Muñoz, R. J., Balaggan, K. S., MacNeil, A., Howe, S. J., Schmidt, M., Smith, A. J., Buch, P., MacLaren, R. E., Anderson, P. N., Barker, S. E., Duran, Y., Bartholomae, C., von Kalle, C., Heckenlively, J. R., Kinnon, C., Ali, R. R., and Thrasher, A. J. (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12, 348-53.

    Article  PubMed  Google Scholar 

  19. Goff, S., Traktman, P., and Baltimore, D. (1981) Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J. Virol. 38, 239-48.

    PubMed  CAS  Google Scholar 

  20. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., Trono, D. (1987) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871-75.

    Article  Google Scholar 

  21. Bayer, M., Kantor, B., Cockrell, A., Ma, H., Zeithaml, B., Li, X., McCown, T., and Kafri, T. (2008) A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol. Ther. 16, 1968-76.

    Article  PubMed  CAS  Google Scholar 

  22. Berger, G., Goujon, C., Darlix, J.L., and Cimarelli, A. (2009) SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors. Gene Ther. 16, 159-63.

    Article  PubMed  CAS  Google Scholar 

  23. Philpott, N.J., and Thrasher, A.J. (2007) Use of nonintegrating lentiviral vectors for gene therapy. Hum. Gene Ther. 18, 483-9.

    Article  PubMed  CAS  Google Scholar 

  24. Philippe, S., Sarkis, C., Barkats, M., Mammeri, H., Ladroue, C., Petit, C., Mallet, J., and Serguera, C. (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 103, 17684-9.

    Article  PubMed  CAS  Google Scholar 

  25. Apolonia, L., Waddington, S.N., Fernandes, C., Ward, N.J., Bouma, G., Blundell, M.P., Thrasher, A.J., Collins, M.K., and Philpott, N.J. (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol. Ther. 15, 1947-54.

    Article  PubMed  CAS  Google Scholar 

  26. Nightingale, S.J., Hollis, R.P., Pepper, K.A., Petersen, D., Yu, X.J., Yang, C., Bahner, I., and Kohn, D.B. (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13, 1121-32.

    Article  PubMed  CAS  Google Scholar 

  27. Gillim-Ross, L., Cara, A., and Klotman, M.E. (2005) HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol. 18, 190-6.

    Article  PubMed  CAS  Google Scholar 

  28. Rahim, A.A., Wong, A.M., Howe, S.J., Buckley, S.M., Acosta-Saltos, A.D., Elston, K.E., Ward, N.J., Philpott, N.J., Cooper, J.D., Anderson, P.N., Waddington, S.N., Thrasher, A.J., and Raivich, G. (2009) Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther. Jan 22. doi:10.1038/gt.2008.186.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patrizia Cocco and Ferdinando Costa (National AIDS Center, Istituto Superiore di Sanità, Rome, Italy) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Michelini, Z., Negri, D., Cara, A. (2010). Integrase Defective, Nonintegrating Lentiviral Vectors. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics