Skip to main content

Manipulating the Cell Differentiation Through Lentiviral Vectors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

The manipulation of cell differentiation is important to create new sources for the treatment of degenerative diseases or solve cell depletion after aggressive therapy against cancer. In this chapter, the use of a tissue-specific promoter lentiviral vector to obtain a myocardial pure lineage from murine embryonic stem cells (mES) is described in detail. Since the cardiac isoform of troponin I gene product is not expressed in skeletal or other muscle types, short mouse cardiac troponin proximal promoter is used to drive reporter genes. Cells are infected simultaneously with two lentiviral vectors, the first expressing EGFP to monitor the transduction efficiency, and the other expressing a puromycin resistance gene to select the specific cells of interest. This technical approach describes a method to obtain a pure cardiomyocyte population and can be applied to other lineages of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A, and Skutella T. (2008) Generation of pluripotent stem cells from adult human testis. Nature 456, 344-9.

    Article  PubMed  CAS  Google Scholar 

  2. Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, and Lazzari G. (2003) Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.

    Article  PubMed  CAS  Google Scholar 

  3. Passier R, van Laake LW, and Mummery CL. (2008) Stem-cell-based therapy and lessons from the heart. Nature 453, 322-29.

    Article  PubMed  CAS  Google Scholar 

  4. Jaenisch R, and Young R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-82.

    Article  PubMed  CAS  Google Scholar 

  5. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, and Scholer HR. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-50.

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, and Yamanaka S. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-6.

    Article  PubMed  CAS  Google Scholar 

  7. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, and Yamanaka S. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-53.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Okita K, Nakagawa M, and Yamanaka S. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081-89.

    Article  PubMed  CAS  Google Scholar 

  9. Wobus AM, and Boheler KR. (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85, 635-78.

    Article  PubMed  CAS  Google Scholar 

  10. Brunetti D, Perota A, Lagutina I, Colleoni S, Duchi R, Calabrese F, Seveso M, Cozzi E, Lazzari G, Lucchini F, and Galli C. (2008) Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts. Cloning Stem Cells 10, 409-19.

    Article  PubMed  CAS  Google Scholar 

  11. Gallo P, Grimaldi S, Latronico MV, Bonci D, Pagliuca A, Gallo P, Ausoni S, Peschle C, and Condorelli G. (2008) A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther 15, 161-70.

    Article  PubMed  CAS  Google Scholar 

  12. Chan AW, Homan EJ, Ballou LU, Burns JC, and Bremel RD. (1998) Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci U S A 95, 14028-33.

    Article  PubMed  CAS  Google Scholar 

  13. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A. (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4, 1054-60.

    Google Scholar 

  14. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, and Ailhaud G. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110, 1279-85.

    PubMed  CAS  Google Scholar 

  15. Doss MX, Koehler CI, Gissel C, Hescheler J, and Sachinidis A. (2004) Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 8, 465-73.

    Article  PubMed  Google Scholar 

  16. Kawamorita M, Suzuki C, Saito G, Sato T, and Sato K. (2002) In vitro differentiation of mouse embryonic stem cells after activation by retinoic acid. Hum Cell 15, 178-82.

    Article  PubMed  Google Scholar 

  17. Rippon HJ, and Bishop AE. (2004) Embryonic stem cells. Cell Prolif 37, 23-34.

    Article  PubMed  CAS  Google Scholar 

  18. Rippon HJ, Lane S, Qin M, Ismail NS, Wilson MR, Takata M, Bishop AE. (2008) Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc 5, 717-22.

    Article  PubMed  Google Scholar 

  19. Tang S, Qiu G, and Huang B. (2000) Differentiation of embryonic stem cells into neuronal cells in vitro. Zhonghua Yi Xue Za Zhi 80, 936-8.

    PubMed  CAS  Google Scholar 

  20. Wei H, Juhasz O, Li J, Tarasova YS, and Boheler KR. (2005) Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9, 804-17.

    Article  PubMed  Google Scholar 

  21. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, and Yamashita JK. (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498-506.

    Article  PubMed  Google Scholar 

  22. Bhavsar PK, Brand NJ, Yacoub MH, and Barton PJ. (1996) Isolation and characterization of the human cardiac troponin I gene (TNNI3). Genomics 35, 11-23.

    Article  PubMed  CAS  Google Scholar 

  23. Ausoni S, Campione M, Picard A, Moretti P, Vitadello M, De Nardi C, and Schiaffino S. (1994) Structure and regulation of the mouse cardiac troponin I gene. J Biol Chem 269, 339-46.

    Google Scholar 

  24. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A, Innocenzi A, Follenzi A, Lavitrano M, Monti MG, Ross J, Jr., Naldini L, Peschle C, Cossu G, and Condorelli G. (2003) ‘Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 10, 630-6.

    Article  PubMed  CAS  Google Scholar 

  25. Puceat M. (2008) Protocols for cardiac differentiation of embryonic stem cells. Methods 45, 168-71.

    Article  PubMed  CAS  Google Scholar 

  26. Savatier P, Lapillonne H, Jirmanova L, Vitelli L, and Samarut J. (2002) Analysis of the cell cycle in mouse embryonic stem cells. Methods Mol Biol 185, 27-33.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Antonio Addario e Giuseppe Loreto for their professional technical support. The authors also thank Antonia Follenzi and Luigi Naldini for providing lentiviral vectors. This work was supported by the Italian Health Ministry and Istituto Superiore di Sanità.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coppola, V., Galli, C., Musumeci, M., Bonci, D. (2010). Manipulating the Cell Differentiation Through Lentiviral Vectors. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics