Skip to main content

Ca2+ Imaging: Principles of Analysis and Enhancement

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 43))

Abstract

In this chapter, we review the theoretical and experimental foundations underling a quantitative approach to Ca2+ imaging, discuss equilibrium conditions and their violations and present a computational framework that can be used to estimate the spatial and temporal dynamics of Ca2+ signals based of fluorescence measurements with Ca2+ indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Note that, because of (3.3), the c T in (3.4) is the same as in (3.8)–(3.10).

References

  1. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404

    Article  CAS  PubMed  Google Scholar 

  2. Wu YC, Tucker T, Fettiplace R (1996) A theoretical study of calcium microdomains in turtle hair cells. Biophys J 71(5):2256–2275

    Article  CAS  PubMed  Google Scholar 

  3. Bortolozzi M, Lelli A, Mammano F (2008) Calcium microdomains at presynaptic active zones of vertebrate hair cells unmasked by stochastic deconvolution. Cell Calcium 44(2):158–168

    Article  CAS  PubMed  Google Scholar 

  4. Thomas D et al (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28(4):213–223

    Article  CAS  PubMed  Google Scholar 

  5. Hyrc KL, Bownik JM, Goldberg MP (2000) Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. Cell Calcium 27(2):75–86

    Article  CAS  PubMed  Google Scholar 

  6. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  7. Kao JPY (1994) Practical aspects of measuring [Ca2+] with fluorescent indicators. In: Nuccitelli R (ed) A practical guide to the study of calcium in living cells. Academic, San Diego, p 155–181

    Google Scholar 

  8. Lipp P, Niggli E (1993) Ratiometric confocal Ca(2+)-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14(5):359–372

    Article  CAS  PubMed  Google Scholar 

  9. Miyawaki A et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  PubMed  Google Scholar 

  10. Truong K et al (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8(12):1069–1073

    Article  CAS  PubMed  Google Scholar 

  11. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1(3):1057–1065

    Article  CAS  PubMed  Google Scholar 

  12. Heim N et al (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4(2):127–129

    Article  CAS  PubMed  Google Scholar 

  13. Wallace DJ et al (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5(9):797–804

    Article  CAS  PubMed  Google Scholar 

  14. Hendel T et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28(29):7399–7411

    Article  CAS  PubMed  Google Scholar 

  15. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34(11):1423–1442

    Article  CAS  PubMed  Google Scholar 

  16. Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70(2):1069–1081

    Article  CAS  PubMed  Google Scholar 

  17. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  18. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    Article  CAS  PubMed  Google Scholar 

  19. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  CAS  PubMed  Google Scholar 

  20. Dumont RA et al (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21(14):5066–5078

    CAS  PubMed  Google Scholar 

  21. Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87(4):1461–1465

    Article  CAS  PubMed  Google Scholar 

  22. Lumpkin EA, Hudspeth AJ (1998) Regulation of free Ca2+ concentration in hair-cell stereocilia. J Neurosci 18(16):6300–6318

    CAS  PubMed  Google Scholar 

  23. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London, p 424

    Google Scholar 

  24. Canepari M, Mammano F (1999) Imaging neuronal calcium fluorescence at high spatio-temporal resolution. J Neurosci Methods 87(1):1–11

    Article  CAS  PubMed  Google Scholar 

  25. Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14(5 Pt 2):3246–3262

    CAS  PubMed  Google Scholar 

  26. Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 72(2 Pt 1):674–690

    Article  CAS  PubMed  Google Scholar 

  27. Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64(1):77–91

    Article  CAS  PubMed  Google Scholar 

  28. Riley MR et al (1995) Monte Carlo simulation of diffusion and reaction in two-dimensional cell structures. Biophys J 68(5):1716–1726

    Article  CAS  PubMed  Google Scholar 

  29. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66(2 Pt 1):394–401

    Article  CAS  PubMed  Google Scholar 

  30. Saxton MJ (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70(3):1250–1262

    Article  CAS  PubMed  Google Scholar 

  31. Bartol TM Jr et al (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59(6):1290–1307

    Article  CAS  PubMed  Google Scholar 

  32. Kruk PJ, Korn H, Faber DS (1997) The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J 73(6):2874–2890

    Article  CAS  PubMed  Google Scholar 

  33. Olveczky BP, Verkman AS (1998) Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J 74(5):2722–2730

    Article  CAS  PubMed  Google Scholar 

  34. Stibitz GR (1969) Calculating diffusion in biological systems by random walks with special reference to gases diffusion in the lung. Respir Physiol 7(2):230–262

    Article  CAS  PubMed  Google Scholar 

  35. Gil A et al (2000) Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells. Biophys J 78(1):13–33

    Article  CAS  PubMed  Google Scholar 

  36. Bennett MR, Farnell L, Gibson WG (2000) The probability of quantal secretion near a single calcium channel of an active zone. Biophys J 78(5):2201–2221

    Article  CAS  PubMed  Google Scholar 

  37. Segura J, Gil A, Soria B (2000) Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. Biophys J 79(4):1771–1786

    Article  CAS  PubMed  Google Scholar 

  38. Coggan JS et al (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309(5733):446–451

    Article  CAS  PubMed  Google Scholar 

  39. He L et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444(7115):102–105

    Article  CAS  PubMed  Google Scholar 

  40. Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35(6):591–601

    Article  CAS  PubMed  Google Scholar 

  41. Maravall M et al (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78(5):2655–2667

    Article  CAS  PubMed  Google Scholar 

  42. Woodruff ML et al (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542(Pt 3):843–854

    Article  CAS  PubMed  Google Scholar 

  43. Hiraoka Y, Sedat JW, Agard DA (1990) Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys J 57(2):325–333

    Article  CAS  PubMed  Google Scholar 

  44. Poenie M (2006) Fluorescent calcium indicators based on BAPTA. In: Putney JW Jr (ed) Calcium signaling. CRC Taylor & Francis, Boca Raton, FL, p 1–50.

    Google Scholar 

  45. Beltramello M et al (2005) Impaired permeability to Ins(1, 4, 5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7(1):63–69

    Article  CAS  PubMed  Google Scholar 

  46. Spiden SL et al (2008) The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 4(10):e1000238

    Article  PubMed  Google Scholar 

  47. Lelli A et al (2003) Presynaptic calcium stores modulate afferent release in vestibular hair cells. J Neurosci 23(17):6894–6903

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants to FM from Fondazione Cariparo (Progetti di Eccellenza 2006), MIUR PRIN Grant n. 2007BZ4RX3_003 and the European commission FP6 Integrated Project EuroHear (LSHGCT20054512063) under the Sixth Research Frame Program of The European Union. We thank the Editor of this book, Alexej Verkhratsky, for discussions and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mammano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mammano, F., Bortolozzi, M. (2010). Ca2+ Imaging: Principles of Analysis and Enhancement. In: Verkhratsky, A., Petersen, O. (eds) Calcium Measurement Methods. Neuromethods, vol 43. Humana Press. https://doi.org/10.1007/978-1-60761-476-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-476-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-475-3

  • Online ISBN: 978-1-60761-476-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics