Advertisement

Liposomes pp 31-53 | Cite as

Studying Mechanosensitive Ion Channels Using Liposomes

  • Boris MartinacEmail author
  • Paul R. Rohde
  • Andrew R. Battle
  • Evgeny Petrov
  • Prithwish Pal
  • Alexander Fook Weng Foo
  • Valeria Vásquez
  • Thuan Huynh
  • Anna Kloda
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)

Abstract

Mechanosensitive (MS) ion channels are the primary molecular transducers of mechanical force into electrical and/or chemical intracellular signals in living cells. They have been implicated in innumerable mechanosensory physiological processes including touch and pain sensation, hearing, blood pressure control, micturition, cell volume regulation, tissue growth, or cellular turgor control. Much of what we know about the basic physical principles underlying the conversion of mechanical force acting upon membranes of living cells into conformational changes of MS channels comes from studies of MS channels reconstituted into artificial liposomes. Using bacterial MS channels as a model, we have shown by reconstituting these channels into liposomes that there is a close relationship between the physico-chemical properties of the lipid bilayer and structural dynamics bringing about the function of these channels.

Key words

MscL MscS NMDA Liposome reconstitution Patch clamp EPR spectroscopy FRET spectroscopy Confocal microscopy 

Notes

Acknowledgments

We wish to thank Dr Stephen Hughes for his contribution to studies of magnetic field effects on the MscL channels using liposome reconstitution technique. This research has been supported by grants of the Australian Research Council and the National Health and Medical Research Council of Australia to B. Martinac and A. Kloda.

References

  1. 1.
    Kung CA (2005) A possible unifying principle for mechanosensation. Nature 436:647-54CrossRefPubMedGoogle Scholar
  2. 2.
    Martinac B (2005) Force from lipids: physical principles of gating mechanosensitive channels by mechanical force revealed by chemical manipulation of cellular membranes. The Chemical Educator 10(2):107-14Google Scholar
  3. 3.
    Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685-740PubMedGoogle Scholar
  4. 4.
    Martinac B (2001) Mechanosensitive channels in prokaryotes. Cell Physiol Biochem 11:61-76CrossRefPubMedGoogle Scholar
  5. 5.
    Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Biophys J 60:1120-7CrossRefPubMedGoogle Scholar
  6. 6.
    Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261-3CrossRefPubMedGoogle Scholar
  7. 7.
    Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179-85CrossRefPubMedGoogle Scholar
  8. 8.
    Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128-33CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang Y, Gao F, Popov VL, Wen JW, Hamill OP (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J Physiol 523(Pt 1):117-30CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105-10CrossRefPubMedGoogle Scholar
  11. 11.
    Kloda A, Lua L, Hall R, Adams DJ, Martinac B (2007) Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proc Natl Acad Sci USA 104:1540-5CrossRefPubMedGoogle Scholar
  12. 12.
    Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942-8CrossRefPubMedGoogle Scholar
  13. 13.
    Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696-703CrossRefPubMedGoogle Scholar
  14. 14.
    Corry B, Rigby P, Liu ZW, Martinac B (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89:L49-51CrossRefGoogle Scholar
  15. 15.
    Hughes S, El Haj AJ, Dobson J, Martinac B (2005) The influence of static magnetic fields on mechanosensitive ion channel activity in artificial liposomes. Eur Biophys J 34:461-8CrossRefPubMedGoogle Scholar
  16. 16.
    Petrov E, Martinac B (2007) Modulation of channel activity and gadolinium block of MscL by static magnetic fields. Eur Biophys J 36:95-105CrossRefPubMedGoogle Scholar
  17. 17.
    Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631-6CrossRefPubMedGoogle Scholar
  18. 18.
    Häse CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329-34CrossRefPubMedGoogle Scholar
  19. 19.
    Battle AR, Petrov E, Pal P, Martinac B (2009) Rapid and improved reconstitution of bac­terial mechanosensitive ion channel pro­teins MscS and MscL into liposomes using a modified sucrose method. FEBS Letters 583: 407-412CrossRefPubMedGoogle Scholar
  20. 20.
    Vasquez V, Cortes DM, Furukawa H, Perozo E (2007) An optimized purification and reconstitution method for the MscS channel: strategies for spectroscopical analysis. Biochemistry 46:6766-73CrossRefPubMedGoogle Scholar
  21. 21.
    Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290-8CrossRefPubMedGoogle Scholar
  22. 22.
    Martinac B, Kloda A (2003) Evolutionary origins of mechanosensitive ion channels. Prog Biophys Mol Biol 82:11-24CrossRefPubMedGoogle Scholar
  23. 23.
    Sakmann B, Neher E (1995) Single-channel recording. Plenum Press, New York and LondonGoogle Scholar
  24. 24.
    Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297-301CrossRefPubMedGoogle Scholar
  25. 25.
    Norman C, Liu ZW, Rigby P, Raso A, Petrov Y, Martinac B (2005) Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur Biophys J 34:396-402CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Boris Martinac
    • 1
    Email author
  • Paul R. Rohde
    • 1
  • Andrew R. Battle
    • 2
  • Evgeny Petrov
    • 1
  • Prithwish Pal
    • 1
  • Alexander Fook Weng Foo
    • 2
  • Valeria Vásquez
    • 3
  • Thuan Huynh
    • 1
  • Anna Kloda
    • 1
  1. 1.Molecular Biophysics Laboratory, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Molecular Biophysics Laboratory, School of Biomedical Sciences and Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  3. 3.Biochemistry Department, Gordon Center for Integrative ScienceThe University of ChicagoChicagoUSA

Personalised recommendations