Liposomes pp 469-491 | Cite as

Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Pre-formed Liposomes for Diagnostic Imaging and Radionuclide Therapy

  • Beth Goins
  • Ande Bao
  • William T. PhillipsEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m (99mTc), for non-invasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 (186/188Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load 99mTc or 186/188Re into pre-formed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport 99mTc or 186/188Re across the lipid bilayer of the pre-formed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the 99mTc and 186/188Re within the liposomes. In the first method, 99mTc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and 99mTc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, 99mTc or 186/188Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N’,N’-diethylethylenediamine (BMEDA), and 99mTc-BMEDA or 186/188Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for 99mTc or 186/188Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, 99mTc/186/188Re-BMEDA complex becomes protonated and more hydrophilic, which results in stable entrapment of the 99mTc/186/188Re-BMEDA complex within the liposomes. Since many commercially available liposomal drugs use an ammonium sulfate (pH) gradient for drug loading, these liposomal drugs can be directly radiolabeled with 99mTc-BMEDA for non-invasive monitoring of tissue distribution during treatment or with 186/188Re-BMEDA for combination chemo-radionuclide therapy.

Key words

Radionuclide Radiolabeling Liposomes Scintigraphy Imaging Rhenium Technetium-99m Nanoparticle Radiopharmaceutical Nuclear medicine 



The authors would like to thank Anuradha Soundararajan for her help in acquiring the images depicted in Fig. 4 and Jonathan Sumner for his help in preparing the figures displayed in this chapter. This work was supported by NIH National Cancer Institute Cancer Center Specialized Programs of Research Excellence grant 5 P30 CA054174-16.


  1. 1.
    Carlsson J, Forssell-Aronsson E, Glimelius B, Mattsson S (2002) Therapy with radiopharmaceuticals. Acta Oncol 41:623-628CrossRefPubMedGoogle Scholar
  2. 2.
    Kowalsky R, Falen SW (2004) Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. American Pharmacists Association, Washington, DCGoogle Scholar
  3. 3.
    Boerman OC, Laverman P, Oyen WJ, Corstens FH, Storm G (2000) Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res 39:461-475CrossRefPubMedGoogle Scholar
  4. 4.
    Boerman OC, Oyen WJ, Corstens FH, Storm G (1998) Liposomes for scintigraphic imaging: optimization of in vivo behavior. Q J Nucl Med 42:271-279PubMedGoogle Scholar
  5. 5.
    Brouwers AH, De Jong DJ, Dams ET, Oyen WJ, Boerman OC, Laverman P, Naber TH, Storm G, Corstens FH (2000) Tc-99m-PEG-liposomes for the evaluation of colitis in Crohn’s disease. J Drug Target 8:225-233CrossRefPubMedGoogle Scholar
  6. 6.
    Dagar S, Rubinstein I, Onyuksel H (2003) Liposomes in ultrasound and gamma scintigraphic imaging. Methods Enzymol 373:198-214CrossRefPubMedGoogle Scholar
  7. 7.
    Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, Buijs WC, Bakker H, van der Meer JW, Corstens FH (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41:622-630PubMedGoogle Scholar
  8. 8.
    Goins B (2008) Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opin Med Diagn 2:853-873CrossRefGoogle Scholar
  9. 9.
    Laverman P, Boerman OC, Storm G (2003) Radiolabeling of liposomes for scintigraphic imaging. Methods Enzymol 373:234-248CrossRefPubMedGoogle Scholar
  10. 10.
    Laverman P, Brouwers AH, Dams ET, Oyen WJ, Storm G, van Rooijen N, Corstens FH, Boerman OC (2000) Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. J Pharmacol Exp Ther 293:996-1001PubMedGoogle Scholar
  11. 11.
    Morgan JR, Williams LA, Howard CB (1985) Technetium-labelled liposome imaging for deep-seated infection. Br J Radiol 58:35-39CrossRefPubMedGoogle Scholar
  12. 12.
    Osborne MP (1978) Lymph node scanning for breast cancer. Trans Med Soc Lond 95:43-45PubMedGoogle Scholar
  13. 13.
    Osborne MP, Payne JH, Richardson VJ, McCready VR, Ryman BE (1983) The preoperative detection of axillary lymph node metastases in breast cancer by isotope imaging. Br J Surg 70:141-144CrossRefPubMedGoogle Scholar
  14. 14.
    O’Sullivan MM, Powell N, French AP, Williams KE, Morgan JR, Williams BD (1988) Inflammatory joint disease: a comparison of liposome scanning, bone scanning, and radiography. Ann Rheum Dis 47:485-491CrossRefPubMedGoogle Scholar
  15. 15.
    Richardson VJ, Ryman BE, Jewkes RF, Jeyasingh K, Tattersall MN, Newlands ES, Kaye SB (1979) Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients. Br J Cancer 40:35-43PubMedGoogle Scholar
  16. 16.
    Richardson VJ, Ryman BE, Jewkes RF, Tattersall MH, Newlands ES (1978) 99mTc-labelled liposomes preparation of radio­pharmaceutical and its distribution in a hepatoma patient. Int J Nucl Med Biol 5: 118, 121-123Google Scholar
  17. 17.
    Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128-E147CrossRefPubMedGoogle Scholar
  18. 18.
    Williams BD, O’Sullivan MM, Saggu GS, Williams KE, Williams LA, Morgan JR (1987) Synovial accumulation of technetium labelled liposomes in rheumatoid arthritis. Ann Rheum Dis 46:314-318CrossRefPubMedGoogle Scholar
  19. 19.
    Goins BA, Phillips WT (2001) The use of scintigraphic imaging as a tool in the development of liposome formulations. Prog Lipid Res 40:95-123CrossRefPubMedGoogle Scholar
  20. 20.
    Lopez-Berestein G, Kasi L, Rosenblum MG, Haynie T, Jahns M, Glenn H, Mehta R, Mavligit GM, Hersh EM (1984) Clinical pharmacology of 99mTc-labeled liposomes in patients with cancer. Cancer Res 44:375-378PubMedGoogle Scholar
  21. 21.
    Murray JL, Kleinerman ES, Cunningham JE, Tatom JR, Andrejcio K, Lepe-Zuniga J, Lamki LM, Rosenblum MG, Frost H, Gutterman JU et al (1989) Phase I trial of liposomal muramyl tripeptide phosphatidylethanola­mine in cancer patients. J Clin Oncol 7:1915-1925PubMedGoogle Scholar
  22. 22.
    Perez-Soler R, Lopez-Berestein G, Kasi LP, Cabanillas F, Jahns M, Glenn H, Hersh EM, Haynie T (1985) Distribution of technetium-99m-labeled multilamellar liposomes in patients with Hodgkin’s disease. J Nucl Med 26:743-749PubMedGoogle Scholar
  23. 23.
    Saari SM, Vidgren MT, Koskinen MO, Turjanmaa VM, Waldrep JC, Nieminen MM (1998) Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 113:1573-1579CrossRefPubMedGoogle Scholar
  24. 24.
    Kleiter MM, Yu D, Mohammadian LA, Niehaus N, Spasojevic I, Sanders L, Viglianti BL, Yarmolenko PS, Hauck M, Petry NA, Wong TZ, Dewhirst MW, Thrall DE (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800-6807CrossRefPubMedGoogle Scholar
  25. 25.
    Goins B (2008) Radiolabeled lipid nanoparticles for cancer diagnosis and treatment. In: Kumar M (ed) Handbook of particulate drug delivery, vol 2. American Scientific Publishers, Stevenson Ranch, CA, pp 65-82Google Scholar
  26. 26.
    Bao A, Goins B, Klipper R, Negrete G, Phillips WT (2003) 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J Nucl Med 44:1992-1999PubMedGoogle Scholar
  27. 27.
    Bard DR, Knight CG, Page-Thomas DP (1985) Effect of the intra-articular injection of lutetium-177 in chelator liposomes on the progress of an experimental arthritis in rabbits. Clin Exp Rheumatol 3:237-242PubMedGoogle Scholar
  28. 28.
    Chang YJ, Chang CH, Chang TJ, Yu CY, Chen LC, Jan ML, Luo TY, Lee TW, Ting G (2007) Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Res 27:2217-2225PubMedGoogle Scholar
  29. 29.
    Chen LC, Chang CH, Yu CY, Chang YJ, Hsu WC, Ho CL, Yeh CH, Luo TY, Lee TW, Ting G (2007) Biodistribution, pharmacokinetics and imaging of (188)Re-BMEDA-labeled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nucl Med Biol 34:415-423CrossRefPubMedGoogle Scholar
  30. 30.
    Hafeli U, Tiefenauer LX, Schbiger PA, Weder HG (1991) A lipophilic complex with 186Re/188Re incorporated in liposomes suitable for radiotherapy. Int J Rad Appl Instrum B 18:449-454PubMedGoogle Scholar
  31. 31.
    Hardy JG, Kellaway IW, Rogers J, Wilson CG (1980) The distribution and fate of 131I-labelled liposomes. J Pharm Pharmacol 32:309-313PubMedGoogle Scholar
  32. 32.
    Henriksen G, Schoultz BW, Michaelsen TE, Bruland OS, Larsen RH (2004) Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol 31:441-449CrossRefPubMedGoogle Scholar
  33. 33.
    McQuarrie S, Mercer J, Syme A, Suresh M, Miller G (2005) Preliminary results of nanopharmaceuticals used in the radioimmunotherapy of ovarian cancer. J Pharm Pharm Sci 7:29-34PubMedGoogle Scholar
  34. 34.
    Pikul SS 2nd, Parks NJ, Schneider PD (1987) In vitro killing of melanoma by liposome-delivered intracellular irradiation. Arch Surg 122:1417-1420PubMedGoogle Scholar
  35. 35.
    Sofou S, Kappel BJ, Jaggi JS, McDevitt MR, Scheinberg DA, Sgouros G (2007) Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers. Bioconjug Chem 18:2061-2067CrossRefPubMedGoogle Scholar
  36. 36.
    Zweit J (1996) Radionuclides and carrier molecules for therapy. Phys Med Biol 41:1905-1914CrossRefPubMedGoogle Scholar
  37. 37.
    Jeong JM, Knapp FF Jr (2008) Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy. Semin Nucl Med 38:S19-S29CrossRefPubMedGoogle Scholar
  38. 38.
    Goins B, Phillips WT (2003) Radiolabelled liposomes for imaging and biodistribution studies. In: Torchilin V, Weissig V (eds) Liposomes: a practical approach. Oxford University Press, Oxford, UK, pp 319-336Google Scholar
  39. 39.
    Ahkong QF, Tilcock C (1992) Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipalmitoylphosphatidylethanolamine-DTTA. Int J Rad Appl Instrum B 19:831-840PubMedGoogle Scholar
  40. 40.
    Erdogan S, Roby A, Torchilin VP (2006) Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharm 3:525-530CrossRefPubMedGoogle Scholar
  41. 41.
    Hnatowich DJ, Friedman B, Clancy B, Novak M (1981) Labeling of pre-formed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med 22:810-814PubMedGoogle Scholar
  42. 42.
    Laverman P, Dams ET, Oyen WJ, Storm G, Koenders EB, Prevost R, van der Meer JW, Corstens FH, Boerman OC (1999) A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med 40:192-197PubMedGoogle Scholar
  43. 43.
    Richardson VJ, Jeyasingh K, Jewkes RF, Ryman BE, Tattersall MH (1977) Properties of (99mTc) technetium-labelled liposomes in normal and tumour-bearing rats. Biochem Soc Trans 5:290-291PubMedGoogle Scholar
  44. 44.
    Awasthi VD, Goins B, Klipper R, Phillips WT (1998) Dual radiolabeled liposomes: biodistribution studies and localization of focal sites of infection in rats. Nucl Med Biol 25:155-160PubMedGoogle Scholar
  45. 45.
    Bao A, Goins B, Klipper R, Negrete G, Mahindaratne M, Phillips WT (2003) A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: in vitro and in vivo evaluation. J Pharm Sci 92:1893-1904CrossRefPubMedGoogle Scholar
  46. 46.
    Gabizon A, Huberty J, Straubinger RM, Price DM, Papahadjopoulos D (1988) An improved method for in vivo tracing and imaging of liposomes using a gallium-67-desferoxamine complex. J Liposome Res 1:123-135CrossRefGoogle Scholar
  47. 47.
    Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243-254PubMedGoogle Scholar
  48. 48.
    Mougin-Degraef M, Jestin E, Bruel D, Remaud-Le Saec P, Morandeau L, Faivre-Chauvet A, Barbet J (2006) High-activity radio-iodine labeling of conventional and stealth liposomes. J Liposome Res 16:91-102CrossRefPubMedGoogle Scholar
  49. 49.
    Phillips WT, Rudolph AS, Goins B, Timmons JH, Klipper R, Blumhardt R (1992) A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Rad Appl Instrum B 19:539-547PubMedGoogle Scholar
  50. 50.
    Bao A, Goins B, Klipper R, Negrete G, Phillips WT (2004) Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308:419-425CrossRefPubMedGoogle Scholar
  51. 51.
    Bao A, Phillips WT, Goins B, Zheng X, Sabour S, Natarajan M, Ross Woolley F, Zavaleta C, Otto RA (2006) Potential use of drug carried-liposomes for cancer therapy via direct intratumoral injection. Int J Pharm 316:162-169CrossRefPubMedGoogle Scholar
  52. 52.
    Wang SX, Bao A, Herrera SJ, Phillips WT, Goins B, Santoyo C, Miller FR, Otto RA (2008) Intraoperative 186Re-liposome radionuclide therapy in a head and neck squamous cell carcinoma xenograft positive surgical margin model. Clin Cancer Res 14:3975-3983CrossRefPubMedGoogle Scholar
  53. 53.
    Zuidam NJ, de Vrueh R, Crommelin DJA (2003) Characterization of liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: a practical approach. Oxford University Press, Oxford, UK, pp 31-78Google Scholar
  54. 54.
    Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10-14CrossRefPubMedGoogle Scholar
  55. 55.
    Medina LA, Calixto SM, Klipper R, Li Y, Phillips WT, Goins B (2006) Mediastinal node and diaphragmatic targeting after intracavitary injection of avidin/99mTc-blue-biotin-liposome system. J Pharm Sci 95:207-224CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations