Liposomes pp 457-467 | Cite as

Spectral Bio-Imaging and Confocal Imaging of the Intracellular Distribution of Lipoplexes

  • Sebastian Schneider
  • Regine SüssEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


The intracellular distribution of nanoparticular drug delivery systems is very complex, but its investigation yields high potential for further development and optimization of these systems.

In the following chapter, we introduce the application of fluorescent imaging techniques in order to highlight uptake and cellular processing of nanoparticular drug delivery systems (e.g., liposomal drug delivery systems). We selected a combination of different protocols for the staining of the most important endocytic compartments and organelles. The presented imaging systems are appropriate to detect liposomal drug delivery systems localized in these cellular structures.

Key words

Nanoparticular drug delivery systems Fluorescence microscopy Endocytosis Colocalization studies Intracellular trafficking 


  1. 1.
    van der Aa MA, Huth US, Hafele SY et al (2007) Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res 24(8):1590-1598CrossRefPubMedGoogle Scholar
  2. 2.
    Huth US, Schubert R, Peschka-Suss R (2006) Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release 110(3):490-504CrossRefPubMedGoogle Scholar
  3. 3.
    Huth U, Wieschollek A, Garini Y, Schubert R, Peschka-Suss R (2004) Fourier transformed spectral bio-imaging for studying the intracellular fate of liposomes. Cytometry A 57(1):10-21CrossRefPubMedGoogle Scholar
  4. 4.
    Karin M, Mintz B (1981) Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem 256(7):3245-3252PubMedGoogle Scholar
  5. 5.
    Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI (2007) Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 266(2):129-137CrossRefPubMedGoogle Scholar
  6. 6.
    Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 14(8):3254-3265CrossRefPubMedGoogle Scholar
  7. 7.
    Mu FT, Callaghan JM, Steele-Mortimer O et al (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270(22):13503-13511CrossRefPubMedGoogle Scholar
  8. 8.
    Chen JW, Murphy TL, Willingham MC, Pastan I, August JT (1985) Identification of two lysosomal membrane glycoproteins. J Cell Biol 101(1):85-95CrossRefPubMedGoogle Scholar
  9. 9.
    Bush WS, Ihrke G, Robinson JM, Kenworthy AK (2006) Antibody-specific detection of caveolin-1 in subapical compartments of MDCK cells. Histochem Cell Biol 126(1):27-34CrossRefPubMedGoogle Scholar
  10. 10.
    Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3(5):473-483CrossRefPubMedGoogle Scholar
  11. 11.
    Le PU, Nabi IR (2003) Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 116(Pt 6):1059-1071CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology and BiopharmacyAlbert-Ludwigs UniversityFreiburgGermany

Personalised recommendations