Liposomes pp 425-437 | Cite as

Fluorescence Methods for Evaluating Lipoplex-Mediated Gene Delivery

  • Henrique Faneca
  • Nejat Düzgüneş
  • Maria C. Pedroso de Lima
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


The biological activity of cationic liposome/DNA complexes (“lipoplexes”) is strongly dependent on their ability to protect DNA and to interact with cells, including binding to the cell surface, internalization via endocytosis and cytoplasmic delivery of the DNA. In this chapter, we describe a number of methods and procedures to study these processes, based on the use of fluorescent probes.

Key words

Cationic liposomes Lipoplexes Gene delivery DNA protection Binding and uptake of lipoplexes Intracellular distribution of lipoplexes 


  1. 1.
    Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116:255-264CrossRefPubMedGoogle Scholar
  2. 2.
    Khalil IA, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58:32-45CrossRefPubMedGoogle Scholar
  3. 3.
    Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgünes˛ N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277-294CrossRefPubMedGoogle Scholar
  4. 4.
    Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes˛ N et al (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237-254CrossRefPubMedGoogle Scholar
  5. 5.
    Lechardeur D, Lukacs GL (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2:183-194CrossRefPubMedGoogle Scholar
  6. 6.
    Faneca H, Cabrita AS, Simões S, Pedroso de Lima MC (2007) Evaluation of the antitumoral effect mediated by IL-12 and HSV-tk genes when delivered by a novel lipid-based system. Biochim Biophys Acta 1768:1093-1102CrossRefPubMedGoogle Scholar
  7. 7.
    Faneca H, Simões S, Pedroso de Lima MC (2004) Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 6:681-692CrossRefPubMedGoogle Scholar
  8. 8.
    Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgünes˛ N (2000) Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. Biochim Biophys Acta 1463:459-469CrossRefPubMedGoogle Scholar
  9. 9.
    Wang L, MacDonald RC (2004) Effects of microtubule-depolymerizing agents on the transfection of cultured vascular smooth muscle cells: Enhanced expression with free drug and especially with drug-gene lipoplexes. Mol Ther 9:729-737CrossRefPubMedGoogle Scholar
  10. 10.
    Hasegawa S, Hirashima N, Nakanishi M (2001) Microtubule involvement in the intracellular dynamics for gene transfection mediated by cationic liposomes. Gene Ther 8:1669-1673CrossRefPubMedGoogle Scholar
  11. 11.
    Chowdhury NR, Hays RM, Bommineni VR, Franki N, Chowdhury JR, Wu CH et al (1996) Microtubular disruption prolongs the expression of human bilirubin-uridinediphos­phoglucuronate-glucuronosyltransferase-1 gene transferred into Gunn rat livers. J Biol Chem 271:2341-2346CrossRefPubMedGoogle Scholar
  12. 12.
    Faneca H, Simões S, Pedroso de Lima MC (2002) Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim Biophys Acta 1567:23-33CrossRefPubMedGoogle Scholar
  13. 13.
    Faneca H, Faustino A, Pedroso de Lima MC (2008) Synergistic antitumoral effect of non-viral HSV-tk/GCV gene therapy and vinblastine in mammary adenocarcinoma cells. J Control Release 126:175-184CrossRefPubMedGoogle Scholar
  14. 14.
    Pedroso de Lima MC, Faneca H, Mano M, Penacho N, Düzgünes˛ N, Simões S (2003) Biophysical characterization of cationic liposome-DNA complexes and their interaction with cells. Meth Enzymol 373:298-312CrossRefGoogle Scholar
  15. 15.
    Fiske CH, Subbarow Y (1925) The calori­metric determination of phosphorus. J Biol Chem 66:375-400Google Scholar
  16. 16.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466-468PubMedGoogle Scholar
  17. 17.
    Düzgünes˛ N (2003) Preparation and quantitation of small unilamellar liposomes and large unilamellar reverse-phase evaporation liposomes. Meth Enzymol 367:23-27CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Henrique Faneca
    • 1
  • Nejat Düzgüneş
    • 2
  • Maria C. Pedroso de Lima
    • 3
  1. 1.Faculty of Science and Technology, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Microbiology, Arthur A. Dugoni School of DentistryUniversity of the PacificSan FranciscoUSA
  3. 3.Department of Biochemistry, Faculty of Science and Technology, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations