Liposomes pp 351-361 | Cite as

Atomic Force Microscopy for the Characterization of Proteoliposomes

  • Johannes Sitterberg
  • Maria Manuela Gaspar
  • Carsten Ehrhardt
  • Udo Bakowsky
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


Atomic Force Microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In the study presented here, the surface morphology ofP-selectin and Transferrin modified proteoliposomes were investigated in air and under water. The proteins were visualized without pre-functionalization or staining.

Key words

AFM Proteoliposomes P-Selectin Transferrin Surface Modification 



This work was supported in parts by DFG Forschergruppe 627 Nanohale and JPK Instruments Berlin (Germany) (UB and JS). This work was supported in part by grants from Enterprise Ireland under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland (CE and MMG).


  1. 1.
    Lukas K, Zhifeng S (1998) The application of AFM to biomembranes Biomembrane StructuresGoogle Scholar
  2. 2.
    Schneider S, Lärmer J, Henderson R, Oberleithner H (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflügers Arch 435:362-7CrossRefPubMedGoogle Scholar
  3. 3.
    Rasch P, Wiedemann U, Wienberg J, Heckl W (1993) Analysis of banded human chromosomes and in situ hybridization patterns by scanning force microscopy. Proc Natl Acad Sci USA 90:2509CrossRefPubMedGoogle Scholar
  4. 4.
    Hansma HG, Kasuya K, Oroudjev E (2004) Atomic force microscopy imaging and pulling of nucleic acids. Curr Opin Struct Biol 14:380-5CrossRefPubMedGoogle Scholar
  5. 5.
    Kamruzzahan A, Kienberger F, Stroh C et al (2004) Imaging morphological details and pathological differences of red blood cells using tapping-mode. AFM Biol Chem 385:955-60CrossRefGoogle Scholar
  6. 6.
    Engel A, Müller D (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7:715-8CrossRefPubMedGoogle Scholar
  7. 7.
    Müller DJ, Engel A (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285:1347-51CrossRefPubMedGoogle Scholar
  8. 8.
    Zeidel M, Nielsen S, Smith B, Ambudkar S, Maunsbach A, Agre P (1994) Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33:1606-15CrossRefPubMedGoogle Scholar
  9. 9.
    Awasthi S, Singhal S, Pikula S et al (1998) ATP-Dependent human erythrocyte glutathione-conjugate transporter. II. Functional recons­ti­tu­tion of transport activity. Biochemistry 37:5239-48CrossRefPubMedGoogle Scholar
  10. 10.
    Dass C (2008) Drug delivery in cancer using liposomes. Methods Mol Biol 437:177-82CrossRefPubMedGoogle Scholar
  11. 11.
    Lian T, Ho R (2001) Trends and developments in liposome drug delivery systems Journal of Pharmaceutical. Sciences 90:667-80Google Scholar
  12. 12.
    Opinion E (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5:189-204CrossRefGoogle Scholar
  13. 13.
    Bendas G, Krause A, Bakowsky U, Vogel J, Rothe U (1999) Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm 181:79-93CrossRefPubMedGoogle Scholar
  14. 14.
    Pignataro B, Steinem C, Galla H, Fuchs H, Janshoff A (2000) Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys J 78:487-98CrossRefPubMedGoogle Scholar
  15. 15.
    Moore K (1991) GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J Cell Biol 112:491-9CrossRefPubMedGoogle Scholar
  16. 16.
    Rigaud J (2002) Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals Brazilian. J Med Biol Res 35:753-66Google Scholar
  17. 17.
    Anabousi S, Laue M, Lehr C, Bakowsky U, Ehrhardt C (2005) Assessing transferrin modification of liposomes by atomic force microscopy and transmission electron microscopy. Eur J Pharm Biopharm 60:295-303CrossRefPubMedGoogle Scholar
  18. 18.
    Oberle V, Bakowsky U, Zuhorn I, Hoekstra D (2000) Lipoplex formation under equilibrium conditions reveals a three-step mechanism. Biophys J 79:1447-54CrossRefPubMedGoogle Scholar
  19. 19.
    Kneuer C, Ehrhardt C, Bakowsky H et al (2006) The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes: a comparative study. Journal of Nanoscience and Nanotechnology 6:2776-82CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Johannes Sitterberg
    • 1
  • Maria Manuela Gaspar
    • 2
  • Carsten Ehrhardt
    • 3
  • Udo Bakowsky
    • 4
  1. 1.Department of Pharmaceutical Technology and BiopharmacyPhilipps-Universität MarburgMarburgGermany
  2. 2.Unidade Novas Formas de Agentes Bioactivos, iMed, Faculdade de FarmáciaUniversidade de LisboaLisboaPortugal
  3. 3.School of Pharmacy and Pharmaceutical SciencesUniversity of Dublin, Trinity College DublinDublinIreland
  4. 4.Department of Pharmaceutical Technology and BiopharmacyPhilipps-Universität MarburgMarburgGermany

Personalised recommendations