Advertisement

Liposomes pp 333-349 | Cite as

Freeze-Fracture Electron Microscopy on Domains in Lipid Mono- and Bilayer on Nano-Resolution Scale

  • Brigitte Papahadjopoulos-SternbergEmail author
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)

Abstract

Freeze-fracture electron microscopy (FFEM) as a cryo-fixation, replica, and transmission electron microscopy technique is unique in membrane bilayer and lipid monolayer research because it enables us, to excess and visualize pattern such as domains in the hydrophobic center of lipid bilayer as well as the lipid/gas interface of the lipid monolayer. Since one of the preparatory steps of this technique includes fracturing the frozen sample and, since during this fracturing process the fracture plane follows the area of weakest forces, these areas are exposed allowing us to explore the pattern built up by lipids and/or intrinsic proteins and which are also initiated by peptides, drugs, and toxins reaching into these normally hard to access areas. Furthermore, FFEM as a replica technique is applicable to objects of a large size range and combines detailed imaging of fine structures down to nano-resolution scale within images of larger biological or artificial objects up to several ten’s of micrometers in size.

Biological membranes consist of a multitude of components which can self-organize into rafts or domains within the fluid bilayer characterized by lateral inhomogeneities in chemical composition and/or physical properties. These domains seem to play important roles in signal transduction and membrane traffic. Furthermore, lipid domains are important in health and disease and make an interesting target for pharmacological approaches in cure and prevention of diseases such as Alzheimer, Parkinson, cardiovascular and prion diseases, systemic lupus erythematosus and HIV. As a cryofixation technique FFEM is a very powerful tool to capture such domains in a probe-free mode and explore their dynamics on a nano-resolution scale.

Key words

Freeze-fracture electron microscopy Domain exploration Liposomal bilayer Lipid monolayer Lipid-stabilized gas bubbles Membranes 

Notes

Acknowledgments

The author would like to thank Mr. Stephen Kuzmic, S & J Services, Santa Clara for all his technical support especially in building all the home-made devices, Mr. John Ayou, Microanalytical Laboratories, Inc., Emeryville for excess to the JEOL 100CX, Mr. Alexander Veynberg, UC Berkeley for his excellent workshop-work, and Dr. Jack Ackrell for all the helpful discussions and his technical help especially on preparation days.

References

  1. 1.
    Hall CBE (1950) A low temperature replica method for electron microscopy. J Appl Phys 21:61-62CrossRefGoogle Scholar
  2. 2.
    Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol 3:45-60CrossRefPubMedGoogle Scholar
  3. 3.
    Moor H, Mühlethaler K (1963) Fine structure in frozen-etched yeast cells. J Cell Biol 17:609-628CrossRefPubMedGoogle Scholar
  4. 4.
    Pinto da Silva P, Branton D (1970) Membrane splitting in freeze-etching: covalently Bound Ferritin as a Membrane Marker. J Cell Biol 45:598-605CrossRefPubMedGoogle Scholar
  5. 5.
    Branton D (1971) Freeze-etching studies of membrane structures. Phil Trans Roy Soc Lond B 261:133-138CrossRefGoogle Scholar
  6. 6.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720-731CrossRefPubMedGoogle Scholar
  7. 7.
    Bullivant S (1974) Freeze-etching technique applied to biological membranes. Phil Trans R Soc London 268:5-14CrossRefGoogle Scholar
  8. 8.
    Sternberg B (1992) Freeze-fracture electron microscopy of liposomes. In: Gregoriadis G (ed) Liposome Technology, 2nd edn. CRC Press Vol. I, Boca Raton, Ann Arbor, London, Tokyo, pp 363-383Google Scholar
  9. 9.
    Sternberg B (1996) Liposomes as a model for membrane structures and structural transformations: a liposome album. In: Lasic DD, Barenholz Y (eds) Handbook of nonmedical applications of liposomes. From gene delivery and diagnostics to ecology. CRC Press, Boca Raton, New York, London, Tokyo, pp 271-297Google Scholar
  10. 10.
    Sternberg B (1998) Ultrastructural morphology of cationic liposome-DNA complexes for gene therapy. In: Lasic DD, Papahadjopoulos DP (eds) Medical applications of liposomes. Elsevier Amsterdam. Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, pp 395-427CrossRefGoogle Scholar
  11. 11.
    Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Bourgaux C, Couvreur P (2005) Protein driven pattering of self-assembled cubosomic nanostructures: Long oriented nanoridges. J Phys Chem B 109(8):3089-3093CrossRefPubMedGoogle Scholar
  12. 12.
    Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Lesieur S, Sadoc J-F, Ollivon M, Couvreur P (2006) Detailed structure of dimond-type lipid cubic nanoparticles. J Am Chem Soc 128(17):5813-5817CrossRefPubMedGoogle Scholar
  13. 13.
    Brancewicz C, Rasmussen DH, Papahadjopou-los-Sternberg B (2006) Hydrophobic gas bubble formation in Definity®: A freeze-fracture electron microscopy study. J Disp Sci and Techn 27:761-765CrossRefGoogle Scholar
  14. 14.
    Sternberg B, Gale P, Watts A (1989) The effect of temperature and protein content on the dispersive properties of bR from H. halobium in reconstituted DMPC complexes free of endogenous purple membrane lipids: a freeze-fracture electron microscopy study. Biochim Biophys Acta 980:117-126CrossRefGoogle Scholar
  15. 15.
    Sternberg B, Hostis CL, Whiteway CA, Watts A (1992) The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta 1108:21-30CrossRefPubMedGoogle Scholar
  16. 16.
    Sternberg B, Watts A, Cejka Z (1993) Lipid induced modulation of the protein packing in two-dimensional crystals of Bacteriorhodop-sin. J Structural Biology 110:196-204CrossRefGoogle Scholar
  17. 17.
    Lee Kan P, Papahadjopoulos-Sternberg B, Wong D, Waigh RD, Watson DG, Gray AI, McCarthy D, McAllister M, Schätzlein AG, Uchegbu IF (2004) Highly hydrophilic fused aggregates (microsponges) from a C12 Spermine Bolaamphiphile. J Phys Chem B 108:8129-8135CrossRefGoogle Scholar
  18. 18.
    Qu X, Khutoryanskiy VV, Stewart A, Rahman S, Papahadjopoulos-Sternberg B, Dufes Ch, McCarthy D, Wilson CG, Lyons R, Carter KC, Schätzlein A, Uchegbu IF (2006) Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7(12):3452-3459CrossRefPubMedGoogle Scholar
  19. 19.
    Bell PC, Hurley CA, Nicol A, Guenin E, Wong JB, Pilkington-Miksa MA, Sarkar S, Writer MJ, Barker SE, Papahadjopoulos-Sternberg B, Ayazi Shamlou P, Hailes HC, Hart SL, Zicha D, Tabor AB (2007) Biophysical characterization of an integrin-targeted lipopolyplex gene delivery vector. Biochemistry 46:12930-12944CrossRefPubMedGoogle Scholar
  20. 20.
    Borden MA, Martinez GV, Ricker J, Tsvetkova N, Longo M, Gillies RJ, Dayton PA, Ferrara KW (2006) Lateral phase separation in lipid-coated microbubbles. Langmuir 22(9):4291-4297CrossRefPubMedGoogle Scholar
  21. 21.
    Costello MJ (1980) Ultra-rapid freezing of thin biological samples. Scan Electron Microsc Pt 2:361-370Google Scholar
  22. 22.
    Costello MJ, Fetter R, Höchli M (1982) Simple procedures for evaluating the cryofixation of biological samples. J Microsc 125:125-136PubMedGoogle Scholar
  23. 23.
    Tenchov BG, Lis LJ, Quinn PJ (1987) Mechanism and kinetics of the subtransition in hydrated L-dipalmitoyl-phosphatidylcholine. Biochim Biophys Acta 897:143-151CrossRefPubMedGoogle Scholar
  24. 24.
    Copeland BR, McConnell HM (1980) The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosaphtidylcholine and cholesterol. Biochim Biophys Acta 599:95-109CrossRefPubMedGoogle Scholar
  25. 25.
    Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci 55:1048-1056CrossRefPubMedGoogle Scholar
  26. 26.
    Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GG (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100(4):1972-1977CrossRefPubMedGoogle Scholar
  27. 27.
    Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, Wang D, Hom YK, Hann B, Park JW (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. Published on Web 08/20/2008Google Scholar
  28. 28.
    Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100(10):6039-6044CrossRefPubMedGoogle Scholar
  29. 29.
    Sternberg B, Sorgi FL, Huang L (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett 356:361-366CrossRefPubMedGoogle Scholar
  30. 30.
    Margaritis LH, Elgsaeter A, Branton D (1977) Rotary replication for freeze-etching. J Cell Biol 72:47-56CrossRefPubMedGoogle Scholar
  31. 31.
    Ververgaert PHJTh, Verkley AJ (1978) A view on intramembraneous particles. Experrientia 34:454-455CrossRefGoogle Scholar
  32. 32.
    Gross H (1987) High resolution metal ­replication of freeze-dried specimens. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in Biological Electron Microscopy. Springer-Verlag, Berlin, pp 205-228Google Scholar
  33. 33.
    Paradossi G, Cavalieri F, Chiessi E, Ponassi V, Martorana V (2002) Tailoring of physical and chemical properties of macro- and ­microhydrogels based on telechelic PVA. Biomacromolec 3(6):1255-1262CrossRefGoogle Scholar
  34. 34.
    Cavalieri F, El Hamassi A, Chiessi E, Paradossi G (2006) Tethering functional ligands onto shell of ultrasound active ­polymeric microbubbles. Biomacromolec 7(2):604-611CrossRefGoogle Scholar
  35. 35.
    Sternberg B, Rudolph P (1992) Unusual fracture behaviour of membranes made of bipolar lipids of Thermoplasma acidophilum. Electron Microscopy 3, EUREM 92, Granada, Spain, 85-86.Google Scholar
  36. 36.
    Henderson B, Wilson M, Sharp L, Ward JM (2002) Actinobacillus actinomycetemcomitans. J Med Microbiol 51:1013-1020PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.NanoAnalytical LaboratorySan FranciscoUSA

Personalised recommendations