Liposomes pp 271-289 | Cite as

Membrane Translocation Assayed by Fluorescence Spectroscopy

  • Jana Broecker
  • Sandro KellerEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


Assessing the ability of biomolecules or drugs to overcome lipid membranes in a receptor-independent way is of great importance in both basic research and applications involving the use of liposomes. A combination of uptake, release, and dilution experiments performed by steady-state fluorescence spectroscopy provides a powerful, straightforward, and inexpensive way of monitoring membrane translocation of fluorescent compounds. This is particularly true for peptides and proteins carrying intrinsic tryptophan residues, which eliminates the need for attaching extrinsic labeling moieties to the compound of interest. The approach encompasses three different kinds of fluorescence titrations and some simple calculations that can be carried out in a spreadsheet program. A complete set of experiments and data analyses can typically be completed within two days.

Key words

Membrane binding Membrane permeability Membrane permeation Flip-flop Transbilayer movement Uptake Release Dilution Tryptophan fluorescence Vesicles 



We thank Heike Nikolenko (FMP) and Matthias Böthe (Robert Koch Institute, Berlin, Germany) for excellent technical assistance and Sebastian Fiedler (FMP) for helpful comments on the manuscript. We are indebted to Dr. Michael Beyermann, Dagmar Krause, and Bernhard Schmikale for synthesis and purification and to Drs. Eberhard Krause and Michael Schümann (all FMP) for mass-spectrometric characterization of penetratin peptide. This work was supported by the European Commission with grant No. QLK3-CT-2002-01989 to S.K.


  1. 1.
    Heerklotz HH, Binder H, Epand RM (1999) A “release” protocol for isothermal titration calorimetry. Biophys J 76:2606-2613CrossRefPubMedGoogle Scholar
  2. 2.
    Heerklotz H, Seelig J (2000) Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochim Biophys Acta 1508:69-85CrossRefPubMedGoogle Scholar
  3. 3.
    Heerklotz H (2004) The microcalorimetry of lipid membranes. J Phys Condens Matter 16:R441-R467CrossRefGoogle Scholar
  4. 4.
    Hagen V, Dekowski B, Nache V, Schmidt R, Geissler D, Lorenz D, Eichhorst J, Keller S, Kaneko H, Benndorf K, Wiesner B (2005) Coumarinylmethyl esters for ultrafast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis. Angew Chem Int Ed 44:7887-7891CrossRefPubMedGoogle Scholar
  5. 5.
    Cambridge SB, Geissler D, Keller S, Cürten B (2006) A caged doxycycline analogue for photoactivated gene expression. Angew Chem Int Ed 45:2229-2231CrossRefPubMedGoogle Scholar
  6. 6.
    Gilbert D, Funk K, Dekowski B, Lechler R, Keller S, Möhrlen F, Frings S, Hagen V (2007) Caged capsaicins: new tools for the examination of TRPV1 channels in somatosensory neurons. ChemBioChem 8:89-97CrossRefPubMedGoogle Scholar
  7. 7.
    Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793-799CrossRefPubMedGoogle Scholar
  8. 8.
    Tsamaloukas A, Szadkowska H, Slotte PJ, Heerklotz H (2005) Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys J 89:1109-1119CrossRefPubMedGoogle Scholar
  9. 9.
    Tsamaloukas A, Szadkowska H, Heerklotz H (2006) Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Biophys J 90:4479-4487CrossRefPubMedGoogle Scholar
  10. 10.
    Keller S, Heerklotz H, Blume A (2006) Monitoring lipid membrane translocation of sodium dodecyl sulfate by isothermal titration calorimetry. J Am Chem Soc 128:1279-1286CrossRefPubMedGoogle Scholar
  11. 11.
    Keller S, Böthe M, Bienert M, Dathe M, Blume A (2007) A simple fluorescence-spectroscopic membrane translocation assay. ChemBioChem 8:546-552CrossRefPubMedGoogle Scholar
  12. 12.
    Tsamaloukas AD, Keller S, Heerklotz H (2007) Uptake and release protocol for assessing membrane binding and permeation by way of isothermal titration calorimetry. Nat Protoc 2:695-704CrossRefPubMedGoogle Scholar
  13. 13.
    Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513-2521CrossRefPubMedGoogle Scholar
  14. 14.
    Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84-87CrossRefPubMedGoogle Scholar
  15. 15.
    Drin G, Déméné H, Temsamani J, Brasseur R (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40:1824-1834CrossRefPubMedGoogle Scholar
  16. 16.
    Persson D, Thorén PEG, Esbjörner EK, Goksör M, Lincoln P, Nordén B (2004) Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochim Biophys Acta 1665:142-155CrossRefPubMedGoogle Scholar
  17. 17.
    Thorén PEG, Persson D, Karlsson M, Nordén B (2000) The Antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS Lett 482:265-268CrossRefPubMedGoogle Scholar
  18. 18.
    Terrone D, Sang SLW, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787-13799CrossRefPubMedGoogle Scholar
  19. 19.
    Chico DE, Given RL, Miller BT (2003) Binding of cationic cell-permeable peptides to plastic and glass. Peptides 24:3-9CrossRefPubMedGoogle Scholar
  20. 20.
    Persson D, Thorén PEG, Herner M, Lincoln P, Nordén B (2003) Application of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes. Biochemistry 42:421-429CrossRefPubMedGoogle Scholar
  21. 21.
    Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55-65CrossRefGoogle Scholar
  22. 22.
    Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161-168CrossRefPubMedGoogle Scholar
  23. 23.
    MacDonald RC, MacDonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297-303CrossRefPubMedGoogle Scholar
  24. 24.
    Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235-245CrossRefPubMedGoogle Scholar
  25. 25.
    Chatterjee S, Banerjee DK (2002) Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods Mol Biol 199:3-16PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Leibniz Institute of Molecular Pharmacology FMPBerlinGermany

Personalised recommendations