Liposomes pp 247-269 | Cite as

Studying Lipid Organization in Biological Membranes Using Liposomes and EPR Spin Labeling

  • Witold K. SubczynskiEmail author
  • Marija Raguz
  • Justyna Widomska
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


Electron paramagnetic resonance (EPR) spin-labeling methods provide a unique opportunity to determine the lateral organization of lipid bilayer membranes by discrimination of coexisting membrane domains or coexisting membrane phases. In some cases, coexisting membrane domains can be characterized without the need for their physical separation by profiles of alkyl chain order, fluidity, hydrophobicity, and oxygen diffusion-concentration product in situ. This chapter briefly explains how EPR spin-labeling methods can be used to obtain the above-mentioned profiles across lipid bilayer membranes (liposomes). These procedures will be illustrated by EPR measurements performed on multilamellar liposomes made of lipid extracts from cortical and nuclear fractions of the fiber cell plasma membrane of a cow-eye lens. To better elucidate the major factors that determine membrane properties, results for eye lens lipid membranes and simple model membranes that resemble the basic lipid composition of biological membranes will be compared.

Key words

Liposomes Lipid bilayer Membrane domain Cholesterol Lens lipid Hydrophobic barrier Fluidity Order Oxygen permeation Spin label EPR 



This work was supported by grants EY015526, EB002052, and EB001980 of the National Institutes of Health.


  1. 1.
    Kawasaki K, Yin J-J, Subczynski WK, Hyde JS, Kusumi A (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J 80:738-748CrossRefPubMedGoogle Scholar
  2. 2.
    Wisniewska A, Subczynski WK (2006) Accumulation of macular xanthophylls in unsaturated membrane domains. Free Radic Biol Med 40:1820-1826CrossRefPubMedGoogle Scholar
  3. 3.
    Wisniewska A, Subczynski WK (2006) Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes. Free Radic Biol Med 41:1257-1265CrossRefPubMedGoogle Scholar
  4. 4.
    Subczynski WK, Wisniewska A, Hyde JS, Kusumi A (2007) Three-dimensional dynamic structure of the liquid-ordered domain as examined by a pulse-EPR oxygen probing. Biophys J 92:1573-1584CrossRefPubMedGoogle Scholar
  5. 5.
    Wisniewska A, Subczynski WK (2008) The liquid-ordered phase in sphingomyelin-cholesterol membranes as detected by the discrimination by oxygen transport (DOT) method. Cell Mol Biol Lett 13:430-451Google Scholar
  6. 6.
    Raguz M, Widomska J, Dillon J, Gailard ER, Subczynski WK (2008) Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochim Biophys Acta 1778:1079-1090CrossRefPubMedGoogle Scholar
  7. 7.
    Subczynski WK, Widomska J, Wisniewska A, Kusumi A (2007) Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains. In: McIntosh TJ (ed) Methods in molecular biology. Lipid rafts, vol 398. Humana Press, Totowa, pp 143-157Google Scholar
  8. 8.
    Ashikawa I, Yin J-J, Subczynski WK, Kouyama T, Hyde JS, Kusumi A (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33:4947-4952CrossRefPubMedGoogle Scholar
  9. 9.
    Widomska J, Raguz M, Dillon J, Gaillard ER, Subczynski WK (2007) Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochim Biophys Acta 1768:1454-1465CrossRefPubMedGoogle Scholar
  10. 10.
    Widomska J, Raguz M, Subczynski WK (2007) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta 1768:2636-2645Google Scholar
  11. 11.
    Subczynski WK, Lewis RNAH, McElhaney RN, Hodges RS, Hyde JS, Kusumi A (1998) Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane α-helical peptide. Biochemistry 37:3156-3164CrossRefPubMedGoogle Scholar
  12. 12.
    Subczynski WK, Wisniewska A, Yin J-J, Hyde JS, Kusumi A (1994) Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33:7670-7681CrossRefPubMedGoogle Scholar
  13. 13.
    Yin J-J, Subczynski WK (1996) Effects of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron spin resonance spin labeling study. Biophys J 71:832-839CrossRefPubMedGoogle Scholar
  14. 14.
    Kusumi A, Subczynski WK, Hyde JS (1982) Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc Natl Acad Sci U S A 79:1854-1858CrossRefPubMedGoogle Scholar
  15. 15.
    Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci U S A 86:4474-4478CrossRefPubMedGoogle Scholar
  16. 16.
    Smirnov AI, Clarkson RB, Belford RL (1996) EPR linewidth (T2) method to measure oxygen permeability of phospholipids bilayer and its use to study the effect of low ethanol concentration. J Magn Reson B 111:149-157CrossRefPubMedGoogle Scholar
  17. 17.
    Altenbach C, Froncisz W, Hyde JS, Hubbell WL (1989) Conformation of spin-labeled melittin at membrane surface investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys J 56:1183-1191CrossRefPubMedGoogle Scholar
  18. 18.
    Merkle H, Subczynski WK, Kusumi A (1987) Dynamic fluorescence quenching studies on lipid mobilities in phosphatidylcholine-cholesterol membranes. Biochim Biophys Acta 897:238-248CrossRefPubMedGoogle Scholar
  19. 19.
    Zaccai G, Büldt G, Seelig A, Seelig J (1979) Neutron diffraction studies on phosphatidylcholine model membranes II. Chain conformation and segmental disorder. J Mol Biol 134:693-706CrossRefPubMedGoogle Scholar
  20. 20.
    Egreet-Charlier M, Sanson A, Ptak M, Bouloussa O (1978) Ionization of fatty acids at lipid-water interface. FEBS Lett 89:313-316CrossRefGoogle Scholar
  21. 21.
    Kusumi A, Subczynski WK, Hyde JS (1982) Effects of pH on ESR spectra of stearic acid spin labels in membranes: probing the membrane surface. Fed Proc 41:1394Google Scholar
  22. 22.
    Marsh D (1981) Electron spin resonance: spin labels. In: Grell E (ed) Membrane Spectroscopy. Springer-Verlag, Berlin, pp 51-142Google Scholar
  23. 23.
    Berliner LJ (1978) Spin labeling in enzymology: spin-labeled enzymes and proteins. Rotational correlation times calculation. Methods Enzymol 49:466-470Google Scholar
  24. 24.
    Atkins PW, Kivelson D (1966) ESR linewidth in solution. II. Analysis of spin-rotational relaxation data. J Chem Phys 44:169-174CrossRefGoogle Scholar
  25. 25.
    Robinson BH, Hass DA, Mailer C (1994) Molecular dynamics in lipid spin lattice relaxation of nitroxide spin labels. Science 263:490-493CrossRefPubMedGoogle Scholar
  26. 26.
    Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30:8578-8590CrossRefPubMedGoogle Scholar
  27. 27.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497-509PubMedGoogle Scholar
  28. 28.
    Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684-22694CrossRefPubMedGoogle Scholar
  29. 29.
    Bodennec J, Pelled D, Futerman AH (2003) Aminopropyl solid phase extraction and 2 D TLC of neutral glycosphingolipids and neutral lysoglycosphingolipids. J Lipid Res 44:218-226CrossRefPubMedGoogle Scholar
  30. 30.
    Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids, 3rd edn. Oily, BridgwaterGoogle Scholar
  31. 31.
    Subczynski WK, Felix CC, Klug CS, Hyde JS (2005) Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators. J Magn Reson 176:244-248CrossRefPubMedGoogle Scholar
  32. 32.
    Subczynski WK, Swartz HM (2005) EPR oximetry in biological and model samples. In: Eaton SS, Eaton GR, Berliner LJ (eds) Biological magnetic resonance, biomedical epr-part a: free radicals, metals, medicine, and physiology, vol 23. Kluwer/Plenum, New York, pp 229-282CrossRefGoogle Scholar
  33. 33.
    Yin J-J, Hyde JS (1987) Spin-label saturation-recovery electron spin resonance measurements of oxygen transport in membranes. Z Phys Chem (Munich) 153:57-65Google Scholar
  34. 34.
    Hyde JS, Yin J-J, Feix JB, Hubbell WL (1990) Advances in spin label oximetry. Pure Appl Chem 62:255-260CrossRefGoogle Scholar
  35. 35.
    Yin J-J, Hyde JS (1989) Use of high observing power in electron spin resonance saturation-recovery experiments in spin-labeled membranes. J Chem Phys 91:6029-6035CrossRefGoogle Scholar
  36. 36.
    Hyde JS, Subczynski WK (1984) Simulation of ESR spectra of the oxygen-sensitive spin-label probe CTPO. J Magn Reson 56:125-130Google Scholar
  37. 37.
    Hyde JS, Subczynski WK (1989) Spin-label oximetry. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 8. Plenum, New York, pp 399-425Google Scholar
  38. 38.
    Subczynski WK, Hyde JS (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys J 45:743-748CrossRefPubMedGoogle Scholar
  39. 39.
    Griffith OH, Dehlinger PJ, Van SP (1974) Shape of the hydrophobic barrier of phospholipids bilayers (evidence for water penetration into biological membranes). J Membr Biol 15:159-192CrossRefPubMedGoogle Scholar
  40. 40.
    Subczynski WK, Pasenkiewicz-Gierula M, McElhaney RN, Hyde JS, Kusumi A (2003) Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane α-helical peptides with alternating leucine and alanine residues. Biochemistry 42:3939-3948CrossRefPubMedGoogle Scholar
  41. 41.
    Raguz M, Widomska J, Dillon J, Gaillard ER, Subczynski WK (2009) Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochim Biophys Acta, doi:10.1016/j.bbamem.2009.09.005Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Witold K. Subczynski
    • 1
    Email author
  • Marija Raguz
    • 1
  • Justyna Widomska
    • 2
  1. 1.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland

Personalised recommendations