Liposomes pp 189-198 | Cite as

Studying Colloidal Aggregation Using Liposomes

  • Juan Sabín
  • Gerardo Prieto
  • Félix SarmientoEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 606)


Colloidal aggregation using liposomes has been studied in this chapter. As criteria of stability, the stability factor, an extension of the DLVO theory of colloidal stability, the fractal dimension of the liposome aggregates and the different regimes of aggregation (RLCA and DLCA) and the temperature have been used.

Key words

Liposomes aggregation Liposomes stability Stability factor Extension of DLVO model RLCA regime of aggregation DLCA regime of aggregation Fractal dimension 



This work was supported by grants-in-aid from the Spanish “Ministerio de Ciencia e Innovación” (Project MAT2008-04722) and the “Xunta de Galicia” (Project INCITE08PXIB20603PR).


  1. 1.
    New RRC (1990) Liposomes: a practical approach. IRL, OxfordGoogle Scholar
  2. 2.
    Lasic DD (1993) Liposomes. From physics to applications. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Gregoriadis G (1987) Liposomes as drug carriers. Wiley, New YorkGoogle Scholar
  4. 4.
    Devissaguet JP, Puisieux F (1993) Les liposomes: aspects tecnologiques, Biologiques et Pharmacologiques. Les Editions Inserm, ParisGoogle Scholar
  5. 5.
    Alving C, Richards RL (1983) Immunologic aspects of liposomes. In: Ostro MJ (ed) Liposomes. Marcel Dekker, New York, pp 209-287Google Scholar
  6. 6.
    Puisieux F (1985) Les liposomes: applications thérapeutiques. Tec and Doc Lavoisier, ParisGoogle Scholar
  7. 7.
    Hidalgo-Álvarez R, Martín A, Fernández A, Bastos D, Martínez F, de las Nieves FJ (1996) Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids. Adv Colloid Interface Sci 67:1-118CrossRefGoogle Scholar
  8. 8.
    Lips A, Willis E (1973) Low angle light scattering technique for the study of coagulation. J Chem Soc Faraday Trans 1 69:1226-1236CrossRefGoogle Scholar
  9. 9.
    Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URSS 14:633-662Google Scholar
  10. 10.
    Verwey EJW, Overbeek JThG (1948) Theory of the stability of lyophobic colloids. The interaction of particles having an electric double layer. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Tadmor R (2001) The London-van der Waals interaction energy between objects of various geometries. J Phys Condens Matter 13:L195-L202CrossRefGoogle Scholar
  12. 12.
    Vincent B, Bijsterbosch H, Lyklema J (1970) Competitive adsorption of ions and neutral molecules in the Stern layer on silver iodide and its effect on colloidal stability. J Colloid Interface Sci 37:171-178CrossRefGoogle Scholar
  13. 13.
    Bastos D, de las Nieves FJ (1994) Colloidal stability of sulfonated polystyrene model colloids. Correlation with electrokinetic data. Colloid Polym Sci 272:592-597CrossRefGoogle Scholar
  14. 14.
    Molina-Bolívar JA, Galisteo-González F, Hidalgo-Álvarez R (1999) Development of a high sensitivity IgG-latex immunodetection system stabilized by hydration forces. Polym Int 48:685-690CrossRefGoogle Scholar
  15. 15.
    Hunter JR (1981) Zeta potential in colloid science: principles and application. Academic, LondonGoogle Scholar
  16. 16.
    Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51:1119-1122CrossRefGoogle Scholar
  17. 17.
    Eden M (1961) Proceedings of the Fourth Berkeley Symposium on Mathematics, Statics and Probability. In: Neyman F (ed) University of California Press, Berkeley, p. 223Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biophysics and Interfaces Group, Department of Applied Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations