Skip to main content

Molecular Mechanisms of Drug Resistance in Single-Step and Multi-Step Drug-Selected Cancer Cells

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

Multidrug resistance (MDR) remains one of the key determinants in chemotherapeutic success of cancer patients. Often, acquired resistance is mediated by the overexpression of ATP-binding cassette (ABC) drug transporters. To study the mechanisms involved in the MDR phenotype, investigators have generated a variety of in vitro cell culture models using both multi-step and single-step drug selections. Sublines produced from multi-step selections have led to the discovery of several crucial drug transporters including ABCB1, ABCC1, and ABCG2. Additionally, a number of mechanisms causing gene overexpression have been elucidated. To more closely mimic in vivo conditions, investigators have also established MDR sublines with single-step drug selections. Here, we examine some of the multi-step and single-step selected cell lines generated to elucidate the mechanisms involved in the development of MDR in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  3. Dean M, Annilo T (2005) Evolution of the ATP-Binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6:123–142

    Article  CAS  PubMed  Google Scholar 

  4. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  5. Gottesman M, Ambudkar S (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33:453–458

    Article  CAS  PubMed  Google Scholar 

  6. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-Binding Cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  7. Haimeur A, Conseil G, Deeley R, Cole S (2004) The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 5:21–53

    Article  CAS  PubMed  Google Scholar 

  8. Tan B, Piwnica-Worms D, Ratner L (2000) Multidrug resistance transporters and modulation. Curr Opin Oncol 12:450–458

    Article  CAS  PubMed  Google Scholar 

  9. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  10. Calcagno AM, Fostel JM, To KK et al (2008) Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br J Cancer 98:1515–1524

    Article  CAS  PubMed  Google Scholar 

  11. Gottesman MM, Cardarelli C, Goldenberg S, Licht T, Pastan I (1998) Selection and maintenance of multidrug-resistant cells. Methods Enzymol 292:248–258

    Article  CAS  PubMed  Google Scholar 

  12. Akiyama S, Fojo A, Hanover JA, Pastan I, Gottesman MM (1985) Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat Cell Mol Genet 11:117–126

    Article  CAS  PubMed  Google Scholar 

  13. Shen D, Cardarelli C, Hwang J et al (1986) Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J Biol Chem 261:7762–7770

    CAS  PubMed  Google Scholar 

  14. Batist G, Tulpule A, Sinha B et al (1986) Overexpression of a novel anionic glutathione transferase in multidrug- resistant human breast cancer cells. J Biol Chem 261:15544–15549

    CAS  PubMed  Google Scholar 

  15. Scudiero DA, Monks A, Sausville EA (1998) Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 90:862

    CAS  PubMed  Google Scholar 

  16. Liscovitch M, Ravid D (2007) A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett 245:350–352

    Article  CAS  PubMed  Google Scholar 

  17. Mehta K (1994) High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer 58:400–406

    Article  CAS  PubMed  Google Scholar 

  18. Devarajan E, Chen J, Multani AS et al (2002) Human breast cancer MCF-7 cell line contains inherently drug-resistant subclones with distinct genotypic and phenotypic features. Int J Oncol 20:913–920

    CAS  PubMed  Google Scholar 

  19. Harker WG, Sikic BI (1985) Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res 45:4091–4096

    CAS  PubMed  Google Scholar 

  20. McDonald SL, Stevenson DA, Moir SE et al (2005) Genomic changes identified by comparative genomic hybridisation in docetaxel-resistant breast cancer cell lines. Eur J Cancer 41:1086–1094

    Article  CAS  PubMed  Google Scholar 

  21. Guo B, Villeneuve DJ, Hembruff SL et al (2004) Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure. Breast Cancer Res Treat 85:31–51

    Article  CAS  PubMed  Google Scholar 

  22. Villeneuve DJ, Hembruff SL, Veitch Z et al (2006) cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 96:17–39

    Article  CAS  PubMed  Google Scholar 

  23. Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  24. Barrand MA, Heppell-Parton AC, Wright KA, Rabbitts PH, Twentyman PR (1994) A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J Natl Cancer Inst 86:110–117

    Article  CAS  PubMed  Google Scholar 

  25. Twentyman PR, Fox NE, Wright KA, Bleehen NM (1986) Derivation and preliminary characterisation of adriamycin resistant lines of human lung cancer cells. Br J Cancer 53:529–537

    CAS  PubMed  Google Scholar 

  26. Zijlstra JG, de Vries EGE, Mulder NH (1987) Multifactorial drug resistance in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res 47:1780–1784

    CAS  PubMed  Google Scholar 

  27. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH (1994) Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res 54:152–158

    CAS  PubMed  Google Scholar 

  28. Brock I, Hipfner DR, Nielsen BS et al (1995) Sequential coexpression of the multidrug resistance genes MRP and mdr1 and their products in VP-16 (etoposide)-selected H69 small cell lung cancer cells. Cancer Res 55:459–462

    CAS  PubMed  Google Scholar 

  29. Robey RW, Medina-Perez WY, Nishiyama K et al (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7:145–152

    CAS  PubMed  Google Scholar 

  30. Lee JS, Scala S, Matsumoto Y et al (1997) Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. J Cell Biochem 65:513–526

    Article  CAS  PubMed  Google Scholar 

  31. Volk EL, Rohde K, Rhee M et al (2000) Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res 60:3514–3521

    CAS  PubMed  Google Scholar 

  32. Rabindran SK, He H, Singh M et al (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58:5850–5858

    CAS  PubMed  Google Scholar 

  33. Maliepaard M, van Gastelen MA, de Jong LA et al (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59:4559–4563

    CAS  PubMed  Google Scholar 

  34. Rao VK, Wangsa D, Robey RW et al (2005) Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells. Cancer Genet Cytogenet 160:126–133

    Article  CAS  PubMed  Google Scholar 

  35. Boonstra R, Timmer-Bosscha H, van Echten-Arends J et al (2004) Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br J Cancer 90:2411–2417

    CAS  PubMed  Google Scholar 

  36. Yasui K, Mihara S, Zhao C et al (2004) Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 64:1403–1410

    Article  CAS  PubMed  Google Scholar 

  37. Shen D, Fojo A, Chin J et al (1986) Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 232:643–645

    Article  CAS  PubMed  Google Scholar 

  38. Fojo AT, Whang-Peng J, Gottesman MM, Pastan I (1985) Amplification of DNA sequences in human multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 82:7661–7665

    Article  CAS  PubMed  Google Scholar 

  39. Schoenlein PV, Shen DW, Barrett JT, Pastan I, Gottesman MM (1992) Double minute chromosomes carrying the human multidrug resistance 1 and 2 genes are generated from the dimerization of submicroscopic circular DNAs in colchicine-selected KB carcinoma cells. Mol Biol Cell 3:507–520

    CAS  PubMed  Google Scholar 

  40. Chen GK, Lacayo NJ, Duran GE et al (2002) Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer 34:372–383

    Article  PubMed  Google Scholar 

  41. Ince TA, Scotto KW (1995) Differential utilization of multiple transcription start points accompanies the overexpression of the P-glycoprotein-encoding gene in Chinese hamster lung cells. Gene 156:287–290

    Article  CAS  PubMed  Google Scholar 

  42. Ince TA, Scotto KW (1995) A conserved downstream element defines a new class of RNA polymerase II promoters. J Biol Chem 270:30249–30252

    Article  CAS  PubMed  Google Scholar 

  43. Ince TA, Scotto KW (1996) Stable transfection of the P-glycoprotein promoter reproduces the endogenous overexpression phenotype: the role of MED-1. Cancer Res 56:2021–2024

    CAS  PubMed  Google Scholar 

  44. Scotto K (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    Article  CAS  PubMed  Google Scholar 

  45. Mickley LA, Spengler BA, Knutsen TA, Biedler JL, Fojo T (1997) Gene rearrangement: a novel mechanism for MDR-1 gene activation. J Clin Invest 99:1947–1957

    Article  CAS  PubMed  Google Scholar 

  46. Huff LM, Lee J-S, Robey RW, Fojo T (2006) Characterization of gene rearrangements leading to activation of MDR-1. J Biol Chem 281:36501–36509

    Article  CAS  PubMed  Google Scholar 

  47. Mickley Huff L, Wang Z et al (2005) Aberrant transcription from an unrelated promoter can result in MDR-1 expression following drug selection in vitro and in relapsed lymphoma samples. Cancer Res 65:11694–11703

    Article  CAS  Google Scholar 

  48. Chekhun VF, Kulik GI, Yurchenko OV et al (2006) Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett 231:87–93

    Article  CAS  PubMed  Google Scholar 

  49. Eijdems EW, De Haas M, Coco-Martin JM et al (1995) Mechanisms of MRP over-expression in four human lung-cancer cell lines and analysis of the MRP amplicon. Int J Cancer 60:676–684

    Article  CAS  PubMed  Google Scholar 

  50. Miyake K, Mickley L, Litman T et al (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59:8–13

    CAS  PubMed  Google Scholar 

  51. Knutsen T, Rao VK, Ried T et al (2000) Amplification of 4q21–q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer 27:110–116

    Article  CAS  PubMed  Google Scholar 

  52. Volk EL, Farley KM, Wu Y et al (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62:5035–5040

    CAS  PubMed  Google Scholar 

  53. Nakanishi T, Bailey-Dell KJ, Hassel BA et al (2006) Novel 5′ untranslated region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: implications for drug resistance, tissue-specific expression, and alternative promoter usage. Cancer Res 66:5007–5011

    Article  CAS  PubMed  Google Scholar 

  54. To KKW, Polgar O, Huff LM, Morisaki K, Bates SE (2008) Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 6:151–164

    Article  CAS  PubMed  Google Scholar 

  55. To KKW, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative MicroRNA in the S1 colon cancer cell line. Mol Cell Biol 28:5147–5161

    Article  CAS  PubMed  Google Scholar 

  56. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

  57. Chen G, Jaffrezou JP, Fleming WH, Duran GE, Sikic BI (1994) Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res 54:4980–4987

    CAS  PubMed  Google Scholar 

  58. Jaffrezou JP, Chen G, Duran GE, Kuhl JS, Sikic BI (1994) Mutation rates and mechanisms of resistance to etoposide determined from fluctuation analysis. J Natl Cancer Inst 86:1152–1158

    Article  CAS  PubMed  Google Scholar 

  59. Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56:1091–1097

    CAS  PubMed  Google Scholar 

  60. Beketic-Oreskovic L, Duran GE, Chen G, Dumontet C, Sikic BI (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87:1593–1602

    Article  CAS  PubMed  Google Scholar 

  61. Chen KG, Wang YC, Schaner ME et al (2005) Genetic and epigenetic modeling of the origins of multidrug-resistant cells in a human sarcoma cell line. Cancer Res 65:9388–9397

    Article  CAS  PubMed  Google Scholar 

  62. Su GM, Davey MW, Davey RA (1998) Induction of broad drug resistance in small cell lung cancer cells and its reversal by paclitaxel. Int J Cancer 76:702–708

    Article  CAS  PubMed  Google Scholar 

  63. Shinoda C, Maruyama M, Fujishita T et al (2005) Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. Int J Cancer 117:21–31

    Article  CAS  PubMed  Google Scholar 

  64. Calcagno AM, Chewning KJ, Wu CP, Ambudkar SV (2006) Plasma membrane calcium ATPase (PMCA4): a housekeeper for RT-PCR relative quantification of polytopic membrane proteins. BMC Mol Biol 7:29

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. George Leiman for editorial assistance. This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh V. Ambudkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Calcagno, A.M., Ambudkar, S.V. (2010). Molecular Mechanisms of Drug Resistance in Single-Step and Multi-Step Drug-Selected Cancer Cells. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics