Skip to main content

Overcoming Multidrug Resistance in Cancer: Clinical Studies of P-Glycoprotein Inhibitors

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

Chemotherapy remains the mainstay in the treatment and management of many cancers. However, this treatment modality is fraught with difficulties associated with toxicity and also the emergence of chemotherapy resistance is a considerable problem. Cancer scientists and oncologists have worked together for some time to find ways of understanding anticancer drug resistance and also to develop pharmacological strategies to overcome that resistance. The greatest focus has been on the reversal of the multidrug resistance (MDR) phenotype by inhibition of the ATP-binding cassette (ABC) drug transporters. Inhibitors of ABC transporters – termed MDR modulators – have in the past been numerous and have occupied industry and academia in drug discovery programs. The field has been fraught with difficulties and disappointments but, nonetheless, we are currently considering the fourth generation of MDR modulator development with much data pending from the clinical trials with the third-generation modulators. First-generation MDR modulator compounds were very diverse and broad spectrum pharmacological agents which fuelled the excitement surrounding the research into the MDR phenotype in cancer at the time. Second-generation agents were very heavily evaluated in mechanistic studies and formed the basis for a number of oncology portfolios of big pharmaceutical companies. Given this input, a number of clinical trials were carried out, the results of which were somewhat disappointing. Even with the modest evidence of active combinations, trial data were considered promising enough to warrant development of the third-generation of modulators. A number of key molecules have been identified with potent, long lasting MDR reversal properties, and minimal pharmacokinetic interaction with the co-administered cytotoxic agent. The results from a number of these trials are eagerly awaited and there are many in the cancer research community who remain committed to this area of anticancer drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  2. Plumb JA, Strathdee G, Sludden J, Kaye SB (2000) Reversal of drug resistance in human tumour xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH gene promoter. Cancer Res 60:6039–6044

    CAS  PubMed  Google Scholar 

  3. Marathi UK, Dolan ME (1994) Anti-neoplastic activity of sequenced administration of O6-benzylguanine, streptozotocin and 1, 3-bis(2-chlroethy)-1-nitrosourea in vitro and in vivo. Biochem Pharmacol 48:2127–2134

    Article  CAS  PubMed  Google Scholar 

  4. Scotto KW (2002) Transcriptional regulation of ABC transporters. Oncogene 22:7496–7511

    Article  Google Scholar 

  5. Agrawal M, Abraham J, Balis FM et al (2003) Increased 99mTc-sestamibi accumulation in normal liver and drug resistant tumours after the administration of the glycoprotein inhibitor, XR9576. Clin Cancer Res 9:650–656

    CAS  PubMed  Google Scholar 

  6. Linn SC, Pinedo HM, van Ark-Otte J (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71:787–795

    Article  CAS  PubMed  Google Scholar 

  7. Rudas M, Filipits M, Taucher S (2003) Expression of MRP1, LRP and Pgp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Treat 81: 149–157

    Article  CAS  Google Scholar 

  8. Mechetner E, Kyshtoobayeva A, Zonis S (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression in human breast cancer correlate with in vitro resistance to Taxol and doxorubicin. Clin Cancer Res 4:389–398

    CAS  PubMed  Google Scholar 

  9. Abolhoda A, Wilsin AE, Ross H et al (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5: 3352–3356

    CAS  PubMed  Google Scholar 

  10. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  CAS  PubMed  Google Scholar 

  11. Ferry DR, Trauneker H, Kerr DJ (1996) Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 32A:1070–1081

    Article  CAS  PubMed  Google Scholar 

  12. Ambudkar SV, Dey S, Hrycyna CA et al (1999) Biochemical, cellular and pharmacological aspects of the multidrug transporter. Ann Rev Pharmacol Toxicol 39:361–398

    Article  CAS  Google Scholar 

  13. Benson AB, Trump DL, Koeller JM et al (1985) Phase I Study of vinblastine and verapamil given by concurrent i.v. infusion. Cancer Treat Rep 69:795–799

    PubMed  Google Scholar 

  14. Coley HM, Twentyman PR, Workman P (1989) Improved cellular accumulation is characteristic of anthracyclines which retain high activity in multidrug resistant cell lines, alone or in combination with verapamil or cyclosporine A. Biochem Pharmacol 38: 4467–4475

    Article  CAS  PubMed  Google Scholar 

  15. Silbermann MH, Boersma AW, Janssen AL et al (1989) Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in Chinese hamster ovary cells with increasing levels of drug-resistance. Int J Cancer 44:722–726

    Article  CAS  PubMed  Google Scholar 

  16. Tamai I, Safa AR (1990) Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J Biol Chem 265: 16509–16513

    CAS  PubMed  Google Scholar 

  17. Tamai I, Safa AR (1991) Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem 266: 16796–16800

    CAS  PubMed  Google Scholar 

  18. Goldberg H, Ling V, Wong PY, Skorecki K (1998) Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem Biophys Res Commun 152:552–558

    Article  Google Scholar 

  19. Chan HS, Thorner PS, Haddad G (1990) Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8:689–704

    CAS  PubMed  Google Scholar 

  20. Chan HS, Haddad G, Thorner PS (1991) P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614

    Article  CAS  PubMed  Google Scholar 

  21. Chan HS, DeBoer G, Thiessen JJ (1996) Combining cyclosporin with chemotherapy controls intraocular retinoblastoma without requiring radiation. Clin Cancer Res 2: 1499–1508

    CAS  PubMed  Google Scholar 

  22. Lum BL, Kaubisch S, Yahanda AM et al (1992) Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 10:1635–1642

    CAS  PubMed  Google Scholar 

  23. Yahanda AM, Alder KM, Fisher GA et al (1992) Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 10:1624–1634

    CAS  PubMed  Google Scholar 

  24. Callaghan R, Higgins CF (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 71:294

    CAS  PubMed  Google Scholar 

  25. Fine RL, Sachs CW, Albers M (1991) Tamoxifen potentiates the cytotoxicity of vinblastine by increasing intracellular drug accumulation. Proc Am Assoc Cancer Res 32:375

    Google Scholar 

  26. Ramu A, Glaubiger D, Fuks Z (1984) Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res 44: 4392–4395

    CAS  PubMed  Google Scholar 

  27. Stuart NS, Philip P, Harris AL et al (1992) High-dose tamoxifen as an enhancer of etoposide cytotoxicity. Clinical effects and in vitro assessment in p-glycoprotein expressing cell lines. Br J Cancer 66:833–839

    CAS  PubMed  Google Scholar 

  28. Damiani D, Michieli M, Michelutti A et al (1993) P170-associated resistance to doxorubicin, daunorubicin and idarubicin. Anticancer Drugs 4:173–180

    Article  CAS  PubMed  Google Scholar 

  29. Haussermann K, Benz B, Gekeler V, Schumacher K, Eichelbaum M (1991) Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human lymphoma cell lines. Eur J Clin Pharmacol 40:53–59

    Article  CAS  PubMed  Google Scholar 

  30. Motzer RJ, Lyn P, Fischer P et al (1995) Phase I/II trial of dexverapamil plus vinblastine for patients with advanced renal cell carcinoma. J Clin Oncol 13:1958–1965

    CAS  PubMed  Google Scholar 

  31. Warner E, Hedley D, Andrulis I et al (1998) Phase II study of dexverapamil plus anthracycline in patients with metastatic breast cancer who have progressed on the same anthracycline regimen. Clin Cancer Res 4:1451–1457

    CAS  PubMed  Google Scholar 

  32. Gaveriaux C, Boesch D, Boelsterli JJ et al (1989) Overcoming multidrug resistance in Chinese hamster ovary cells in vitro by cyclosporin A (Sandimmune) and non-immunosuppressive derivatives. Br J Cancer 60:867–871

    CAS  PubMed  Google Scholar 

  33. Jachez B, Nordmann R, Loor F (1993) Restoration of taxol sensitivity of multidrug-resistant cells by the cyclosporine SDZ PSC 833 and the cyclopeptolide SDZ 280-446. J Natl Cancer Inst 85:478–483

    Article  CAS  PubMed  Google Scholar 

  34. Keller RP, Altermatt HJ, Nooter K et al (1992) SDZ PSC 833, a non-immunosuppressive cyclosporine: its potency in overcoming P-glycoprotein-mediated multidrug resistance of murine leukemia. Int J Cancer 50:593–597

    Article  CAS  PubMed  Google Scholar 

  35. Pourtier-Manzanedo A, Didier AD, Muller CD, Loor F (1992) SDZ PSC 833 and SDZ 280-446 are the most active of various resistance-modifying agents in restoring rhodamine-123 retention within multidrug resistant P388 cells. Anticancer Drugs 3:419–425

    Article  CAS  PubMed  Google Scholar 

  36. Te Boekhorst PA, van Kapel J, Schoester M, Sonneveld P (1992) Reversal of typical multidrug resistance by cyclosporin and its non-immunosuppressive analogue SDZ PSC 833 in Chinese hamster ovary cells expressing the mdr1 phenotype. Cancer Chemother Pharmacol 30:238–242

    Article  CAS  PubMed  Google Scholar 

  37. Boesch D, Loor F (1994) Extent and persistence of P-glycoprotein inhibition in multidrug-resistant P388 cells after exposure to resistance-modifying agents. Anticancer Drugs 5:229–238

    Article  CAS  PubMed  Google Scholar 

  38. Michieli M, Damiani D, Michelutti A et al (1994) Restoring uptake and retention of daunorubicin and idarubicin in P170-related multidrug resistance cells by low concentration D-verapamil, cyclosporin-A and SDZ PSC 833. Haematologica 79:500–507

    CAS  PubMed  Google Scholar 

  39. Zacherl J, Hamilton G, Thalhammer T et al (1994) Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporine A and SDZ PSC 833 in dependence on extracellular pH. Cancer Chemother Pharmacol 34:125–132

    Article  CAS  PubMed  Google Scholar 

  40. Barrand MA, Rhodes T, Center MS, Twentyman P (1993) Chemosensitisation and drug accumulation effects of cyclosporin A, PSC-833 and verapamil in human MDR large cell lung cancer cells expressing a 190 k membrane protein distinct from P-glycoprotein. Eur J Cancer 29A:408–415

    Article  CAS  PubMed  Google Scholar 

  41. Van der Holt B, Lowenberg B, Burnett AK et al (2005) The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood 106:2646–2654

    Article  PubMed  Google Scholar 

  42. Baer MR, George SL, Dodge RK et al (2002) Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 100:1224–1232

    CAS  PubMed  Google Scholar 

  43. Kolitz JE, George SL, Dodge RK et al (2004) Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol 22:4290–4301

    Article  CAS  PubMed  Google Scholar 

  44. Greenberg PL, Lee SJ, Advani R et al (2004) Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 22:1078–1086

    Article  CAS  PubMed  Google Scholar 

  45. Fracasso PM, Brady MF, Moore DH et al (2001) Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J Clin Oncol 19:2975–2982

    CAS  PubMed  Google Scholar 

  46. Zamora JM, Beck WT (1986) Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem Pharmacol 35:4303–4310

    Article  CAS  PubMed  Google Scholar 

  47. Wang RB, Kuo CL, Lien LL, Lien EJ (2003) Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 28:203–228

    Article  CAS  PubMed  Google Scholar 

  48. Dhainaut A, Regnier G, Atassi G et al (1992) New triazine derivatives as potent modulators of multidrug resistance. J Med Chem 35:2481–2496

    Article  CAS  PubMed  Google Scholar 

  49. Hill BT, van der Graaf WT, Hosking LK et al (1993) Evaluation of S9788 as a potential modulator of drug resistance against human tumour sublines expressing differing resistance mechanisms in vitro. Int J Cancer 55:330–337

    Article  CAS  PubMed  Google Scholar 

  50. Punt CJ, Voest EE, van Oosterom AT et al (1997) Phase 1B study of doxorubicin in combination with the multidrug resistance reversing agent S9788 in advanced colorectal cancer and renal cell cancer. Br. J. Cancer 76:1376–1381

    CAS  PubMed  Google Scholar 

  51. Germann UA, Shlyakhter D, Mason VS (1997) Cellular and biochemical characterization of VX-710 as a chemosensitizer: reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs 8:125–140

    Article  CAS  PubMed  Google Scholar 

  52. Germann UA, Ford PJ, Shlyakhter D, Mason VS, Harding MW (1997) Chemosensitization and drug accumulation effects of VX-710, verapamil, cyclosporin A, MS-209 and GF120918 in multidrug resistant HL60/ADR cells expressing the multidrug resistance-associated protein MRP. Anticancer Drugs 8:141–155

    Article  CAS  PubMed  Google Scholar 

  53. Minderman H, O’Loughlin KL, Pendyala L, Baer MR (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10:1826–1834

    Article  CAS  PubMed  Google Scholar 

  54. Gandhi L, Harding MW, Neubauer M et al (2007) A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer 109:924–932

    Article  CAS  PubMed  Google Scholar 

  55. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53:4595–4602

    CAS  PubMed  Google Scholar 

  56. Myer MS, Joone G, Chasen MR, van Rensburg CE (1999) The chemosensitizing potential of GF120918 is independent of the magnitude of P-glycoprotein-mediated resistance to conventional chemotherapeutic agents in a small cell lung cancer line. Oncol Rep 6:217–218

    CAS  PubMed  Google Scholar 

  57. Martin C, Berridge G, Mistry P et al (2000) Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39:11901–11906

    Article  CAS  PubMed  Google Scholar 

  58. De Bruin M, Miyake K, Litman T, Robey R, Bate SE (1999) Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett 146: 117–126

    Article  PubMed  Google Scholar 

  59. Maliepaard M, van Gastelen MA, Tohgo A et al (2001) Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res 7:935–941

    CAS  PubMed  Google Scholar 

  60. Elgie AW, Sargent JM, Williamson CJ, Lewandowicz GM, Taylor CG (1999) Comparison of P-glycoprotein expression and function with in vitro sensitivity to anthracyclines in AML. Adv Exp Med Biol 457: 29–33

    CAS  PubMed  Google Scholar 

  61. Witherspoon SM, Emerson DL, Kerr BM et al (1996) Flow cytometric assay of modulation of P-glycoprotein function in whole blood by the multidrug resistance inhibitor GG918. Clin Cancer Res 2:7–12

    CAS  PubMed  Google Scholar 

  62. den Ouden D, van den Heuvel M, Schoester M, van Rens G, Sonneveld P (1996) In vitro effect of GF120918, a novel reversal agent of multidrug resistance, on acute leukemia and multiple myeloma cells. Leukemia 10: 1930–1936

    Google Scholar 

  63. Dal IL, Tuffley W, Callaghan R et al (1998) Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative. Br J Cancer 78:885–892

    Google Scholar 

  64. Roe M, Folkes A, Ashworth P et al (1999) Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 9:595–600

    Article  CAS  PubMed  Google Scholar 

  65. Mistry P, Stewart AJ, Dangerfield W et al (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61:749–758

    CAS  PubMed  Google Scholar 

  66. Walker J, Martin C, Callaghan R (2004) Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Eur J Cancer 40: 594–605

    Article  CAS  PubMed  Google Scholar 

  67. Martin C, Berridge G, Mistry P et al (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128:403–411

    Article  CAS  PubMed  Google Scholar 

  68. Martin C, Berridge G, Mistry P et al (2000) Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39:11901–11906

    Article  CAS  PubMed  Google Scholar 

  69. Labrie P, Maddaford SP, Lacroix J et al (2006) In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity at CYP-450. Bioorg Med Chem 14:7972–7987

    Article  CAS  PubMed  Google Scholar 

  70. Robey RW, Steadman K, Polgar O et al (2004) Pheophorbide A is a specific probe for ABCG2 function and inhibition. Cancer Res 64:1242–1246

    Article  CAS  PubMed  Google Scholar 

  71. Pusztai L, Wagner P, Ibrahim N et al (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant advanced breast cancer. Cancer 104:682–691

    Article  CAS  PubMed  Google Scholar 

  72. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  73. Nobili S, Landini I, Giglioni B, Mini E (2006) Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 7:861–879

    Article  CAS  PubMed  Google Scholar 

  74. Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7:447–459

    Article  CAS  PubMed  Google Scholar 

  75. Sato W, Fukazawa N, Suzuki T, Yusa K, Tsuruo T (1991) Circumvention of multidrug resistance by a newly synthesized quinoline derivative, MS-073. Cancer Res 51:2420–2424

    CAS  PubMed  Google Scholar 

  76. Dantzig AH, Shepard RL, Cao J et al (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56:4171–4179

    CAS  PubMed  Google Scholar 

  77. Green LJ, Marder P, Slapak CA (2001) Modulation by LY335979 of P-glycoprotein function in multidrug-resistant cell lines and human natural killer cells. Biochem Pharmacol 61:1393–1399

    Article  CAS  PubMed  Google Scholar 

  78. Dantzig AH, Shepard RL, Law KL et al (1999) Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther 290:854–862

    CAS  PubMed  Google Scholar 

  79. Starling JJ, Shepard RL, Cao J et al (1997) Pharmacological characterization of LY335979: a potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Adv Enzyme Regul 37:335–347

    Article  CAS  PubMed  Google Scholar 

  80. Lehne G, Morkrid L, den Boer M, Rugstad HE (2000) Diverse effects of P-glycoprotein inhibitory agents on human leukemia cells expressing the multidrug resistance protein (MRP). Int J Clin Pharmacol Ther 38:187–195

    CAS  PubMed  Google Scholar 

  81. Shepard RL, Cao J, Starling JJ, Dantzig AH (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125

    Article  CAS  PubMed  Google Scholar 

  82. Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O (2004) Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest New Drugs 22:219–229

    Article  CAS  PubMed  Google Scholar 

  83. Callies S, de Alwis DP, Harris A et al (2003) A population pharmacokinetic model for paclitaxel in the presence of a novel Pgp modulator, Zosuquidar Trihydrochloride (LY335979). Br J Clin Pharmacol 56:46–56

    Article  CAS  PubMed  Google Scholar 

  84. Rubin EH, de Alwis DP, Pouliquen I et al (2002) A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar. 3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin Cancer Res 8:3710–3717

    CAS  PubMed  Google Scholar 

  85. Sandler A, Gordon M, De Alwis DP et al (2004) A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 10:3265–3272

    Article  CAS  PubMed  Google Scholar 

  86. Fracasso PM, Goldstein LJ, de Alwis DP et al (2004) Phase I study of docetaxel in combination with the P-glycoprotein inhibitor, zosuquidar, in resistant malignancies. Clin Cancer Res 10:7220–7228

    Article  CAS  PubMed  Google Scholar 

  87. Gerrard G, Payne E, Baker RJ et al (2004) Clinical effect and P-glycoprotein inhibition in patients with acute myeloid leukaemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica 89:782–790

    CAS  PubMed  Google Scholar 

  88. Le LH, Moore MJ, Siu LL et al (2005) Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol 56:154–160

    Article  CAS  PubMed  Google Scholar 

  89. Cripe LD, Li X, Litzow M et al (2006) A randomized, placebo-controlled, double blind trial of the MDR modulator, zosuquidar, during conventional induction and post-remission therapy for pts > 60 years of age with newly diagnosed acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (HR-MDS): ECOG 3999. ASH Annu Meet Abstr 108:423

    Google Scholar 

  90. Hubesack M, Muller C, Hocherl P et al (2008) Effect of ABCB1 modulators elacridar and tariquidar on the distribution of pacltaxel in nude mice. J Cancer Res Clin Oncol 134:597–607

    Article  Google Scholar 

  91. Newman MJ, Roadarte JC, Benbatoul KD et al (2000) Discovery and characteri­sation of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res 60:2964–2972

    CAS  PubMed  Google Scholar 

  92. Guns ES, Bullock PL, Reimer ML et al (2001) Assessment of the involvement of CYP3A in the vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur J Drug Metab Pharmacokinet 26:273–282

    CAS  PubMed  Google Scholar 

  93. Deferme S, Van Gelder J, Augustijns P (2002) Inhibitory effect of fruit extracts on P-glycoprotein-related efflux carriers: an in-vitro screening. J Pharm Pharmacol 54:1213–1219

    Article  CAS  PubMed  Google Scholar 

  94. Honda Y, Ushigome F, Koyabu N et al (2004) Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol 143:856–864

    Article  CAS  PubMed  Google Scholar 

  95. Limtrakul P, Khantamat O, Pintha K (2005) Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother 17:86–95

    CAS  PubMed  Google Scholar 

  96. Chan KF, Zhao Y, Burkett BA et al (2006) Flavonoid dimmers as bivalent modulators for P-glycoprotein-based multidrug resistance: synthetic apigenin homodimers linked with defined-length poly(ethylene glycol) spacers increase drug retention and enhance chemosensitivity in resistant cancer cells. J Med Chem 49:6742–6759

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Coley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coley, H.M. (2010). Overcoming Multidrug Resistance in Cancer: Clinical Studies of P-Glycoprotein Inhibitors. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics