Skip to main content

Measurement of Mitochondrial Membrane Potential and Proton Leak

  • Protocol
  • First Online:
Book cover Advanced Protocols in Oxidative Stress II

Part of the book series: Methods in Molecular Biology ((MIMB,volume 594))

Abstract

The major component of mitochondrial electrochemical potential gradient of protons is the mitochondrial membrane potential (ΔΨ), and hence it is a suitable parameter for assessment of mitochondrial function. Dissipation of the mitochondrial membrane potential causes uncoupling of the electron transport through the respiratory chain and the phosphorylation reaction for ATP synthesis (proton leak). Proton leak functions as a regulator of mitochondrial reactive oxygen species (ROS) production and its modulation by uncoupling proteins, which may be involved in pathophysiology. In this report, we describe the assays for mitochondrial membrane potential and proton leak, which require a TPP+ electrode and a Clark electrode. The determination of mitochondrial peroxide production with homovanillic acid is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P, Moyle J (1969) Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484

    Article  PubMed  CAS  Google Scholar 

  2. Hoek JB, Nicholls DG, Williamson JR (1980) Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem 255:1458–1464

    PubMed  CAS  Google Scholar 

  3. Plasek J, Vojtiskova A, Houstek J (2005) Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. J Photochem Photobiol B 78:99–108

    Article  PubMed  CAS  Google Scholar 

  4. Brand MD (1995) The measurement of mitochondrial proton motive force. In: Brown GC, Cooper EC (eds) Bioenergetics: A practical approach. IRL, Oxford, pp 39–62

    Google Scholar 

  5. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  6. Shinbo T, Kamo N, Kurihara K, Kobatake Y (1978) A PVC-based electrode sensitive to DDA + as a device for monitoring the membrane potential in biological systems. Arch Biochem Biophys 187:414–422

    Article  PubMed  CAS  Google Scholar 

  7. Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218

    Article  PubMed  CAS  Google Scholar 

  8. Kohnke D, Ludwig B, Kadenbach B (1993) A threshold membrane potential accounts for controversial effects of fatty acids on mitochondrial oxidative phosphorylation. FEBS Lett 336:90–94

    Article  PubMed  CAS  Google Scholar 

  9. Boss O, Muzzin P, Giacobino JP (1998) The uncoupling proteins, a review. Eur J Endocrinol 139:1–9

    Article  PubMed  CAS  Google Scholar 

  10. Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809–815

    PubMed  CAS  Google Scholar 

  11. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  PubMed  CAS  Google Scholar 

  12. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64(1):1–64

    PubMed  CAS  Google Scholar 

  13. Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, Sastre J, Vendemiale G, Altomare E (2008) UCP2 induces mitochondrial proton leak and increases susceptibility of NASH liver to ischemia/reperfusion injury. Gut 57(7):957–65

    Article  PubMed  CAS  Google Scholar 

  14. Brand MD (1990) The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta 1018:128–133

    Article  PubMed  CAS  Google Scholar 

  15. Kun E, Kirsten E, Piper WN (1979) Stabilization of mitochondrial functions with digitonin. Methods Enzymol 55:115–118

    Article  PubMed  CAS  Google Scholar 

  16. Brown GC, Brand MD (1988) Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem J 252(2):473–479

    Google Scholar 

  17. Porter RK, Brand MD (1993) Body mass dependence of H + leak in mitochondria and its relevance to metabolic rate. Nature 362:628–630

    Article  PubMed  CAS  Google Scholar 

  18. Barja G (1998) Measurement of mitochondrial oxygen radical production. In: Yu BP (ed) Methods in aging research. CRC, Boca Raton, FL, pp 533–548

    Google Scholar 

  19. Ruch W, Cooper PH, Baggiolini M (1983) Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Methods 63(3):347–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. N. Capitanio for critical suggestions and Drs. F. Bellanti and R. Tamborra for technical assistance.

The authors also acknowledge the financial support obtained by Grants from Ministerio de Educación y Ciencia (SAF2006-06963 and Consolider CSD-2007-00020) to J. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sastre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Serviddio, G., Sastre, J. (2010). Measurement of Mitochondrial Membrane Potential and Proton Leak. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology, vol 594. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-411-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-411-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-410-4

  • Online ISBN: 978-1-60761-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics