Skip to main content

Quantitative Analysis of Membrane Potentials

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 591))

Abstract

The changes that occur in electrochemical gradients across biological membranes provide us with invaluable information on physiological responses, pathophysiological processes and drug actions/toxicity. This chapter aims to provide researchers with sufficient information to carry out a quantitative assessment of mitochondrial energetics at a single-cell level thereby providing output on changes in the mitochondrial membrane potential (Δψm) through the utilization of potentiometric fluorescent probes (TMRM, TMRE, Rhodamine 123). As these cationic probes behave in a Nernstian fashion, changes at the plasma membrane potential (Δψp) need also to be accounted for in order to validate the responses obtained with Δψm-sensitive fluorescent probes. To this end techniques that utilize Δψp-sensitive anionic fluorescent probes to monitor changes in the plasma membrane potential will also be discussed. In many biological systems multiple changes occur at both a Δψm and Δψp level that often makes the interpretation of the cationic fluorescent responses much more difficult. This problem has driven the development of computational modelling techniques that utilize the redistribution properties of the cationic and anionic fluorescent probes within the cell to provide output on changes in Δψm and Δψp.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Duchen MR. (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med, 25, 365–451.

    CAS  PubMed  Google Scholar 

  2. Nicholls DG. (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med, 4, 149–77.

    Article  CAS  PubMed  Google Scholar 

  3. Choi DW. (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog Brain Res, 100, 47–51.

    Article  CAS  PubMed  Google Scholar 

  4. Choi DW. (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci, 7, 369–79.

    CAS  PubMed  Google Scholar 

  5. Tymianski M, Charlton MP, Carlen PL, Tator CH. (1993) Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res, 607, 319–23.

    Article  CAS  PubMed  Google Scholar 

  6. Budd SL, Nicholls DG. (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem, 67, 2282–91.

    Article  CAS  PubMed  Google Scholar 

  7. White RJ, Reynolds IJ. (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci, 16, 5688–97.

    CAS  PubMed  Google Scholar 

  8. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci, 1, 366–73.

    Article  CAS  PubMed  Google Scholar 

  9. Vergun O, Keelan J, Khodorov BI, Duchen MR. (1999) Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol, 519 Pt 2, 451–66.

    Article  CAS  PubMed  Google Scholar 

  10. Ward MW, Rego AC, Frenguelli BG, Nicholls DG. (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci, 20, 7208–19.

    CAS  PubMed  Google Scholar 

  11. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 15, 961–73.

    Article  CAS  PubMed  Google Scholar 

  12. Ward MW, Rehm M, Duessmann H, Kacmar S, Concannon CG, Prehn JH. (2006) Real time single cell analysis of bid cleavage and bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J Biol Chem, 281, 5837–44.

    Article  CAS  PubMed  Google Scholar 

  13. Budd SL, Tenneti L, Lishnak T, Lipton SA. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA, 97, 6161–6.

    Article  CAS  PubMed  Google Scholar 

  14. Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JH. (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci, 20, 5715–23.

    CAS  PubMed  Google Scholar 

  15. Iijima T, Mishima T, Akagawa K, Iwao Y. (2003) Mitochondrial hyperpolarization after transient oxygen-glucose deprivation and subsequent apoptosis in cultured rat hippocampal neurons. Brain Res, 993, 140–5.

    Article  CAS  PubMed  Google Scholar 

  16. Ward MW, Huber HJ, Weisova P, Dussmann H, Nicholls DG, Prehn JH. (2007) Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate-induced necrosis, apoptosis, and tolerance. J Neurosci, 27, 8238–49.

    Article  CAS  PubMed  Google Scholar 

  17. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM. (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J, 53, 785–94.

    Article  CAS  PubMed  Google Scholar 

  18. Nicholls DG, Ward MW. (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci, 23, 166–74.

    Article  CAS  PubMed  Google Scholar 

  19. Farkas DL, Wei MD, Febbroriello P, Carson JH, Loew LM. (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J, 56, 1053–69.

    Article  CAS  PubMed  Google Scholar 

  20. Khodorov B, Pinelis V, Vergun O, Storozhevykh T, Vinskaya N. (1996) Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett, 397, 230–4.

    Article  CAS  PubMed  Google Scholar 

  21. Keelan J, Vergun O, Duchen MR. (1999) Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. J Physiol, 520 Pt 3, 797–813.

    Article  CAS  PubMed  Google Scholar 

  22. Kiedrowski L. (1998) The difference between mechanisms of kainate and glutamate excitotoxicity in vitro: osmotic lesion versus mitochondrial depolarization. Restor Neurol Neurosci, 12, 71–9.

    CAS  PubMed  Google Scholar 

  23. Prehn JH. (1998) Mitochondrial transmembrane potential and free radical production in excitotoxic neurodegeneration. Naunyn Schmiedebergs Arch Pharmacol, 357, 316–22.

    Article  CAS  PubMed  Google Scholar 

  24. Nicholls DG. (2006) Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem, 281, 14864–74.

    Article  CAS  PubMed  Google Scholar 

  25. Dussmann H, Rehm M, Kogel D, Prehn JH. (2003) Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci, 116, 525–36.

    Article  CAS  PubMed  Google Scholar 

  26. Tomaselli KJ, Damsky CH, Reichardt LF. (1987) Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: identification of integrin-related glycoproteins involved in attachment and process outgrowth. J Cell Biol, 105, 2347–58.

    Article  CAS  PubMed  Google Scholar 

  27. Zhdanov AV, Ward MW, Prehn JH, Papkovsky DB. (2008) Dynamics of intracellular oxygen in PC12 cells upon stimulation of neurotransmission. J Biol Chem, 283, 5650–61.

    Article  CAS  PubMed  Google Scholar 

  28. Sacan A, Ferhatosmanoglu H, Coskun H. (2008) CellTrack: an open-source software for cell tracking and motility analysis. Bioinformatics, 24, 1647–9.

    Article  CAS  PubMed  Google Scholar 

  29. Huber HJ, Plchut M, Weisova P, Dussmann H, Wenus J, Rehm M, Ward MW, Prehn JH. (2009) TOXI-SIM-A simulation tool for the analysis of mitochondrial and plasma membrane potentials. J Neurosci Methods, 176, 270–5.

    Article  CAS  PubMed  Google Scholar 

  30. Freedman JC, Novak TS. (1989) Optical measurement of membrane potential in cells, organelles, and vesicles. Methods Enzymol, 172, 102–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ward, M.W. (2010). Quantitative Analysis of Membrane Potentials. In: Papkovsky, D. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 591. Humana Press. https://doi.org/10.1007/978-1-60761-404-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-404-3_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-403-6

  • Online ISBN: 978-1-60761-404-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics