Skip to main content

Viral Host Resistance Studies

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 598))

Abstract

A foremost objective of preclinical immunotoxicity testing is to address whether or not a drug or environmental toxicant causes adverse effects on net immune health, expressly the host’s ability to mount an appropriate immune response to clear infectious organisms. Given the complex interactions, diverse molecular signaling events, and redundancies of immunity that has itself been subdivided into interdependent arms, namely innate, adaptive, and humoral, the results of single immune parameter testing may not reflect the final outcome of a drug or toxicant’s effect on net immune health. The most comprehensive experimental approach to ascertain this information is utilization of host resistance models. Herein, application of viral host resistance models in rodents and non-human primates is described. Although brief descriptions of numerous viral models are discussed including reovirus, Epstein-Barr virus, cytomegalovirus, and lymphocryptovirus, the most well-characterized viral host resistance model, rodent influenza, is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burleson GR, Burleson FG (2008) Testing human biologicals in animal host resistance models. J Immunol 5:23–31

    Google Scholar 

  2. Shornick LP, Wells AG, Zhang Y, Patel AC, Huang G, Takami K, Sosa M, Shukla NA, Agapov E, Holtzman MJ (2008) Airway epithelial versus immune cell Stat 1 function for innate defense against respiratory viral infection. J Immunol 180(5):3319–3328

    CAS  PubMed  Google Scholar 

  3. Head JL, Lawrence BP (2008) The aryl hyrdocarbon receptor is a modulator of anti-viral immunity. Biochem Pharmacol 77(4):642–653

    Article  PubMed  Google Scholar 

  4. Burleson GR, Burleson FG (2007) Influenza host resistance model. Methods 41(1):31–37

    Article  CAS  PubMed  Google Scholar 

  5. Vorerstrasse BA, Cundiff JA, Lawrence BP (2006) A dose-response study of the effects of TCDD on the immune response to influenza A virus. J Toxicol Environ Health A 69(6):445–463

    Article  Google Scholar 

  6. Scalzo A, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA (2007) The interplay between host and viral factors in shaping the outcome of cytomegalvirus infection. Immunol Cell Biol 85(1):46–54

    Article  CAS  PubMed  Google Scholar 

  7. Burleson GR (1996) Pulmonary immunocompetences and pulmonary immunotoxicology. In: Smialowicz R, Holsapple MP (eds) Experimental immunotoxicology. CRC, Boca Raton, FL, pp 113–135

    Google Scholar 

  8. Burleson GR (1995) Influenza virus host resistance model for assessment of immunotoxicity, immunostimulation, and antiviral compounds. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology. Wiley, New York, pp 181–202

    Google Scholar 

  9. Burns LA, Bradley SG, White KL, McCay JA, Fuchs BA, Stern M, Brown RD, Musgrove DL, Holsapple MP, Luster MI et al (1994) Immunotoxicity of nitrobenzene in female B6C3F1 mice. Drug Chem Toxicol 17(3):271–315

    Article  CAS  PubMed  Google Scholar 

  10. Haustein SV, Kolterman AJ, Sundblad JJ, Fechner JH, Knechtle SJ (2008) Nonhuman primate infections after organ transplantation. ILAR J 49(2):209–219

    CAS  PubMed  Google Scholar 

  11. Hennet T, Ziltener HJ, Frei K, Peterhans E (1992) A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149:932–939

    CAS  PubMed  Google Scholar 

  12. Kim GG, Donnenberg, Donnenberg AD, Gooding W, Whiteside TL (2007) A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells; Comparisons to a 4 h 51Cr-release assay. J Immunol Methods 325:51–66

    Article  CAS  PubMed  Google Scholar 

  13. Yap KL, Ada GL, McKenzie IFC (1978) Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273:238–240

    Article  CAS  PubMed  Google Scholar 

  14. Wells MA, Albrecht P, Ennis FA (1981) Recovery from a viral respiratory infection. I. influenza pneumonia in normal and T-deficient mice. J Immunol 126:1036–1041

    CAS  PubMed  Google Scholar 

  15. Mitchell KA, Lawrence BP (2003) Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCCD) renders influenza virus-specific CD8+ T cells hyporesponsive to antigen. Toxicol Sci 74:74–84

    Article  CAS  PubMed  Google Scholar 

  16. Belz GT, Xie W, Doherty PC (2001) Diversity of epitope and cytokine profiles for primary and secondary influenza A virus specific CD8+ T cell responses. J Immunol 166(7):4627–4633

    CAS  PubMed  Google Scholar 

  17. Finkelman FD, Holmes J, Katona IM, Urban JF, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333

    Article  CAS  PubMed  Google Scholar 

  18. Mutwiri G, Benjamin P, Soita H, Townsend H, Yost R, Roberts B, Andrianov AK, Babiuk LA (2007) Poly[di(sodium carboxylatoethylphenooxy) phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 25(7):1204–1213

    Article  CAS  PubMed  Google Scholar 

  19. Cuff CF, Fulton JR, Barnett JB, Boyce CS (1998) Enteric reovirus infection as a probe to study immunotoxicity of the gastrointestinal tract. Toxicol Sci 42:99–108

    Article  CAS  PubMed  Google Scholar 

  20. Maoxiang L, Cuff CF, Pestka J (2005) Modulation of murine host response to enteric reovirus infection by the trichothecene deoxynivalenol. Toxicol Sci 87(1):134–145

    Article  Google Scholar 

  21. Barkon ML, Haller BL, Virgin HWIV (1996) Circulating immunoglobulin G can play a critical role in clearance of intestinal reovirus infection. J Virol 70:1109–1116

    CAS  PubMed  Google Scholar 

  22. London SD, Rubin DH, Cebra JJ (1987) Gut mucosal immunization with reovirus serotype 1/L stimulates viral specific cytotoxic T cell precursors as well as IgA memory cells in Peyer’s patches. J Exp Med 165:830–847

    Article  CAS  PubMed  Google Scholar 

  23. Major AS, Cuff CF (1996) Effects of the route of infection on immunoglobulin G subclasses and specificity of the reovirus-specific humoral immune response. J Virol 70:5968–5974

    CAS  PubMed  Google Scholar 

  24. Silvey KJ, Hutchings AB, Vajdy M, Petzke MM, Neutra MR (2001) Role of immunoglobulin A in protection against reovirus entry into murine Peyer’s patches. J Virol 75:10870–10879

    Article  CAS  PubMed  Google Scholar 

  25. Fuzzati-Armentero MT, Duchosal MA (1998) hu-PBL-SCID mice: and in vivo model of Epstein-Barr virus-dependent lymphoproliferative disease. Histol Histopathol 13(1):155–168

    CAS  PubMed  Google Scholar 

  26. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198(5):673–682

    Article  CAS  PubMed  Google Scholar 

  27. Selgrade MJK, Daniels MJ (1995) Host resistance models: murine cytomegalovirus. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology. Wiley, New York, pp 203–219

    Google Scholar 

  28. Garssen J, van der Vliet H, De Klerk A, Goettsch W, Dormans JA, Bruggeman CA, Osterhaus AD, van Loveren H (1995) A rat cytomegalovirus infection model as a tool for immunotoxicity testing. Eur J Pharmacol 292(3–4):223–231

    CAS  PubMed  Google Scholar 

  29. Ross PS, de Swart RL, van der Vliet H, Willemsen L, De Klerk A, van Amerongen G, Groen J, Brouwer A, Schipholt I, Morse DC, van Loveren H (1997) Impaired cellular immune response in rats exposed perinatally to Baltic Sea herring oil or 2, 3, 7, 8-TCDD. Arch Toxicol 71(9):563–574

    Article  CAS  PubMed  Google Scholar 

  30. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Lucin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054

    Article  CAS  PubMed  Google Scholar 

  31. Suvas S, Azkur AK, Rouse BT (2006) Qa-1b and CD94-NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8+ T cells in latently infected trigeminal ganglia. J Immunol 176(3):1703–1711

    CAS  PubMed  Google Scholar 

  32. Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in Epstein-Barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81(2):474–482

    Article  CAS  PubMed  Google Scholar 

  33. Stowig T, Brilot F, Arrey F, Bougras G, Thomas D, Muller WA, Munz C (2008) Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via INF-gamma. PLoS Pathog 4(2):e27

    Article  Google Scholar 

  34. Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus phathogenesis in the immunosuppressed host. Blood 104(5):1482–1489

    Article  CAS  PubMed  Google Scholar 

  35. Sasseville VG, Diters RW (2008) Impact of infections and normal flora in nonhuman primates on drug development. ILAR J 49(2):179–190

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author extends gratitude to Florence G. Burleson and Gary R. Burleson for their thoughtful review of this chapter and their scientific guidance in immunotoxicology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Jo Freebern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Freebern, W.J. (2010). Viral Host Resistance Studies. In: Dietert, R. (eds) Immunotoxicity Testing. Methods in Molecular Biology™, vol 598. Humana Press. https://doi.org/10.1007/978-1-60761-401-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-401-2_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-400-5

  • Online ISBN: 978-1-60761-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics