Viral Host Resistance Studies

  • Wendy Jo FreebernEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 598)


A foremost objective of preclinical immunotoxicity testing is to address whether or not a drug or environmental toxicant causes adverse effects on net immune health, expressly the host’s ability to mount an appropriate immune response to clear infectious organisms. Given the complex interactions, diverse molecular signaling events, and redundancies of immunity that has itself been subdivided into interdependent arms, namely innate, adaptive, and humoral, the results of single immune parameter testing may not reflect the final outcome of a drug or toxicant’s effect on net immune health. The most comprehensive experimental approach to ascertain this information is utilization of host resistance models. Herein, application of viral host resistance models in rodents and non-human primates is described. Although brief descriptions of numerous viral models are discussed including reovirus, Epstein-Barr virus, cytomegalovirus, and lymphocryptovirus, the most well-characterized viral host resistance model, rodent influenza, is emphasized.

Key words

Immunotoxicology Host resistance Viral Influenza Latent viral models Viral clearance Non-human primate Rodent Immunosuppression Gastrointestinal viral model 



The author extends gratitude to Florence G. Burleson and Gary R. Burleson for their thoughtful review of this chapter and their scientific guidance in immunotoxicology.


  1. 1.
    Burleson GR, Burleson FG (2008) Testing human biologicals in animal host resistance models. J Immunol 5:23–31Google Scholar
  2. 2.
    Shornick LP, Wells AG, Zhang Y, Patel AC, Huang G, Takami K, Sosa M, Shukla NA, Agapov E, Holtzman MJ (2008) Airway epithelial versus immune cell Stat 1 function for innate defense against respiratory viral infection. J Immunol 180(5):3319–3328PubMedGoogle Scholar
  3. 3.
    Head JL, Lawrence BP (2008) The aryl hyrdocarbon receptor is a modulator of anti-viral immunity. Biochem Pharmacol 77(4):642–653CrossRefPubMedGoogle Scholar
  4. 4.
    Burleson GR, Burleson FG (2007) Influenza host resistance model. Methods 41(1):31–37CrossRefPubMedGoogle Scholar
  5. 5.
    Vorerstrasse BA, Cundiff JA, Lawrence BP (2006) A dose-response study of the effects of TCDD on the immune response to influenza A virus. J Toxicol Environ Health A 69(6):445–463CrossRefGoogle Scholar
  6. 6.
    Scalzo A, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA (2007) The interplay between host and viral factors in shaping the outcome of cytomegalvirus infection. Immunol Cell Biol 85(1):46–54CrossRefPubMedGoogle Scholar
  7. 7.
    Burleson GR (1996) Pulmonary immunocompetences and pulmonary immunotoxicology. In: Smialowicz R, Holsapple MP (eds) Experimental immunotoxicology. CRC, Boca Raton, FL, pp 113–135Google Scholar
  8. 8.
    Burleson GR (1995) Influenza virus host resistance model for assessment of immunotoxicity, immunostimulation, and antiviral compounds. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology. Wiley, New York, pp 181–202Google Scholar
  9. 9.
    Burns LA, Bradley SG, White KL, McCay JA, Fuchs BA, Stern M, Brown RD, Musgrove DL, Holsapple MP, Luster MI et al (1994) Immunotoxicity of nitrobenzene in female B6C3F1 mice. Drug Chem Toxicol 17(3):271–315CrossRefPubMedGoogle Scholar
  10. 10.
    Haustein SV, Kolterman AJ, Sundblad JJ, Fechner JH, Knechtle SJ (2008) Nonhuman primate infections after organ transplantation. ILAR J 49(2):209–219PubMedGoogle Scholar
  11. 11.
    Hennet T, Ziltener HJ, Frei K, Peterhans E (1992) A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149:932–939PubMedGoogle Scholar
  12. 12.
    Kim GG, Donnenberg, Donnenberg AD, Gooding W, Whiteside TL (2007) A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells; Comparisons to a 4 h 51Cr-release assay. J Immunol Methods 325:51–66CrossRefPubMedGoogle Scholar
  13. 13.
    Yap KL, Ada GL, McKenzie IFC (1978) Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273:238–240CrossRefPubMedGoogle Scholar
  14. 14.
    Wells MA, Albrecht P, Ennis FA (1981) Recovery from a viral respiratory infection. I. influenza pneumonia in normal and T-deficient mice. J Immunol 126:1036–1041PubMedGoogle Scholar
  15. 15.
    Mitchell KA, Lawrence BP (2003) Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCCD) renders influenza virus-specific CD8+ T cells hyporesponsive to antigen. Toxicol Sci 74:74–84CrossRefPubMedGoogle Scholar
  16. 16.
    Belz GT, Xie W, Doherty PC (2001) Diversity of epitope and cytokine profiles for primary and secondary influenza A virus specific CD8+ T cell responses. J Immunol 166(7):4627–4633PubMedGoogle Scholar
  17. 17.
    Finkelman FD, Holmes J, Katona IM, Urban JF, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333CrossRefPubMedGoogle Scholar
  18. 18.
    Mutwiri G, Benjamin P, Soita H, Townsend H, Yost R, Roberts B, Andrianov AK, Babiuk LA (2007) Poly[di(sodium carboxylatoethylphenooxy) phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 25(7):1204–1213CrossRefPubMedGoogle Scholar
  19. 19.
    Cuff CF, Fulton JR, Barnett JB, Boyce CS (1998) Enteric reovirus infection as a probe to study immunotoxicity of the gastrointestinal tract. Toxicol Sci 42:99–108CrossRefPubMedGoogle Scholar
  20. 20.
    Maoxiang L, Cuff CF, Pestka J (2005) Modulation of murine host response to enteric reovirus infection by the trichothecene deoxynivalenol. Toxicol Sci 87(1):134–145CrossRefGoogle Scholar
  21. 21.
    Barkon ML, Haller BL, Virgin HWIV (1996) Circulating immunoglobulin G can play a critical role in clearance of intestinal reovirus infection. J Virol 70:1109–1116PubMedGoogle Scholar
  22. 22.
    London SD, Rubin DH, Cebra JJ (1987) Gut mucosal immunization with reovirus serotype 1/L stimulates viral specific cytotoxic T cell precursors as well as IgA memory cells in Peyer’s patches. J Exp Med 165:830–847CrossRefPubMedGoogle Scholar
  23. 23.
    Major AS, Cuff CF (1996) Effects of the route of infection on immunoglobulin G subclasses and specificity of the reovirus-specific humoral immune response. J Virol 70:5968–5974PubMedGoogle Scholar
  24. 24.
    Silvey KJ, Hutchings AB, Vajdy M, Petzke MM, Neutra MR (2001) Role of immunoglobulin A in protection against reovirus entry into murine Peyer’s patches. J Virol 75:10870–10879CrossRefPubMedGoogle Scholar
  25. 25.
    Fuzzati-Armentero MT, Duchosal MA (1998) hu-PBL-SCID mice: and in vivo model of Epstein-Barr virus-dependent lymphoproliferative disease. Histol Histopathol 13(1):155–168PubMedGoogle Scholar
  26. 26.
    Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198(5):673–682CrossRefPubMedGoogle Scholar
  27. 27.
    Selgrade MJK, Daniels MJ (1995) Host resistance models: murine cytomegalovirus. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology. Wiley, New York, pp 203–219Google Scholar
  28. 28.
    Garssen J, van der Vliet H, De Klerk A, Goettsch W, Dormans JA, Bruggeman CA, Osterhaus AD, van Loveren H (1995) A rat cytomegalovirus infection model as a tool for immunotoxicity testing. Eur J Pharmacol 292(3–4):223–231PubMedGoogle Scholar
  29. 29.
    Ross PS, de Swart RL, van der Vliet H, Willemsen L, De Klerk A, van Amerongen G, Groen J, Brouwer A, Schipholt I, Morse DC, van Loveren H (1997) Impaired cellular immune response in rats exposed perinatally to Baltic Sea herring oil or 2, 3, 7, 8-TCDD. Arch Toxicol 71(9):563–574CrossRefPubMedGoogle Scholar
  30. 30.
    Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Lucin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054CrossRefPubMedGoogle Scholar
  31. 31.
    Suvas S, Azkur AK, Rouse BT (2006) Qa-1b and CD94-NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8+ T cells in latently infected trigeminal ganglia. J Immunol 176(3):1703–1711PubMedGoogle Scholar
  32. 32.
    Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in Epstein-Barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81(2):474–482CrossRefPubMedGoogle Scholar
  33. 33.
    Stowig T, Brilot F, Arrey F, Bougras G, Thomas D, Muller WA, Munz C (2008) Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via INF-gamma. PLoS Pathog 4(2):e27CrossRefGoogle Scholar
  34. 34.
    Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus phathogenesis in the immunosuppressed host. Blood 104(5):1482–1489CrossRefPubMedGoogle Scholar
  35. 35.
    Sasseville VG, Diters RW (2008) Impact of infections and normal flora in nonhuman primates on drug development. ILAR J 49(2):179–190PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ImmunotoxicologyDrug Safety Evaluation, Research & Development, Bristol-Myers Squibb Co.SyracuseUSA

Personalised recommendations