Skip to main content

Imaging Cytoskeleton Components by Electron Microscopy

  • Protocol
  • First Online:
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers−actin filaments, microtubules, and intermediate filaments− are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.

This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wohlfarth-Bottermann, K. E. (1962) Weitreichende fibrillare Protoplasmadifferenzierungen und ihre Bedeutung fur die Protoplasmastromung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54, 514–539

    Article  Google Scholar 

  2. Ledbetter, M. C., and Porter, K. R. (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19, 239–250

    Article  CAS  PubMed  Google Scholar 

  3. Sabatini, D. D., Bensch, K., and Barrnett, R. J. (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17, 19–58

    Article  CAS  PubMed  Google Scholar 

  4. Wohlfarth-Bottermann, K. E. (1964) Differentiations of the ground cytoplasm and their significance for the generation of the motive force of ameboid movement. In “Primitive Motile Systems in Cell Biology” (Allen, R. D., and Kamiya, N., Eds.), pp. 79–109, Academic Press, New York-London

    Google Scholar 

  5. Abercrombie, M., Heaysman, J. E., and Pegrum, S. M. (1971) The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67, 359–367

    Article  CAS  PubMed  Google Scholar 

  6. Small, J. V., Isenberg, G., and Celis, J. E. (1978) Polarity of actin at the leading edge of cultured cells. Nature 272, 638–639

    Article  CAS  PubMed  Google Scholar 

  7. Costello, M. J. (2006) Cryo-electron microscopy of biological samples. Ultrastruct Pathol 30, 361–371

    Article  PubMed  Google Scholar 

  8. Murphy, G. E., and Jensen, G. J. (2007) Electron cryotomography. Biotechniques 43, 413, 15, 17 passim

    Article  CAS  PubMed  Google Scholar 

  9. Heuser, J. (1981) Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol 22, 97–122

    Article  CAS  PubMed  Google Scholar 

  10. Steere, R. L. (1957) Electron microscopy of structural detail in frozen biological specimens. J. Cell Biol. 3, 45–60

    Article  CAS  Google Scholar 

  11. Heuser, J. (1989) Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique. J Electron Microsc Tech 13, 244–263

    Article  CAS  PubMed  Google Scholar 

  12. Loesser, K. E., and Franzini-Armstrong, C. (1990) A simple method for freeze-drying of macromolecules and macromolecular complexes. J Struct Biol 103, 48–56

    Article  CAS  PubMed  Google Scholar 

  13. Heuser, J. E., and Kirschner, M. W. (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol 86, 212–234

    Article  CAS  PubMed  Google Scholar 

  14. Svitkina, T. M., Shevelev, A. A., Bershadsky, A. D., and Gelfand, V. I. (1984) Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol 34, 64–74

    CAS  PubMed  Google Scholar 

  15. Svitkina, T. M., Verkhovsky, A. B., and Borisy, G. G. (1995) Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol 115, 290–303

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, H. W., and Richter, W. (2001) Freeze-fracture studies on lipids and membranes. Micron 32, 615–644

    Article  CAS  PubMed  Google Scholar 

  17. Hirokawa, N. (1989) Quick-freeze, deep-etch electron microscopy. J Electron Microsc (Tokyo) 38 Suppl, S123–S128

    CAS  Google Scholar 

  18. Svitkina, T. (2007) Electron microscopic analysis of the leading edge in migrating cells. Methods Cell Biol 79, 295–319

    Article  CAS  PubMed  Google Scholar 

  19. Svitkina, T. M., and Borisy, G. G. (2006) Correlative light and electron microscopy studies of cytoskeletal dynamics. In “Cell Biology: A Laboratory Handbook; 3rd Edition” (Celis, J., Ed.), Vol. 3, pp. 277–285, Elsevier, Amsterdam

    Google Scholar 

  20. Svitkina, T. M., and Borisy, G. G. (1998) Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol 298, 570–592

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., McEwen, B. F., and Khodjakov, A. (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391

    Article  CAS  PubMed  Google Scholar 

  22. Ostap, E. M., Maupin, P., Doberstein, S. K., Baines, I. C., Korn, E. D., and Pollard, T. D. (2003) Dynamic localization of myosin-I to endocytic structures in Acanthamoeba. Cell Motil Cytoskeleton 54, 29–40

    Article  CAS  PubMed  Google Scholar 

  23. Sosinsky, G. E., Giepmans, B. N., Deerinck, T. J., Gaietta, G. M., and Ellisman, M. H. (2007) Markers for correlated light and electron microscopy. Methods Cell Biol 79, 575–591

    Article  CAS  PubMed  Google Scholar 

  24. Verkade, P. (2008) Moving EM: the Rapid Transfer System as a new tool for correlative light and electron microscopy and high throughput for high-pressure freezing. J Microsc 230, 317–328

    Article  CAS  PubMed  Google Scholar 

  25. Kandela, I. K., Bleher, R., and Albrecht, R. M. (2008) Immunolabeling for correlative light and electron microscopy on ultrathin cryosections. Microsc Microanal 14, 159–165

    Article  CAS  PubMed  Google Scholar 

  26. Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., and Plitzko, J. M. (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135–145

    Article  PubMed  Google Scholar 

  27. Nemethova, M., Auinger, S., and Small, J. V. (2008) Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J Cell Biol 180, 1233–1244

    Article  CAS  PubMed  Google Scholar 

  28. Svitkina, T. M., Bulanova, E. A., Chaga, O. Y., Vignjevic, D. M., Kojima, S., Vasiliev, J. M., and Borisy, G. G. (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160, 409–421

    Article  CAS  PubMed  Google Scholar 

  29. Yang, C., Czech, L., Gerboth, S., Kojima, S., Scita, G., and Svitkina, T. (2007) Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 5, e317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges the current support from NIH grant R01 GM 70898.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Svitkina, T. (2009). Imaging Cytoskeleton Components by Electron Microscopy. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics