Advertisement

Lipidomics pp 161-187 | Cite as

HPLC/MS/MS-Based Approaches for Detection and Quantification of Eicosanoids

  • Susanna L. Lundström
  • Fabio L. D’Alexandri
  • Kasem Nithipatikom
  • Jesper Z. Haeggström
  • Åsa M. Wheelock
  • Craig E. Wheelock
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 579)

Summary

Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.

Key words

Eicosanoid Oxylipin Arachidonic acid Mass spectrometry Electrospray Ion trap LC/MS/MS Bronchoalveolar lavage fluid BALF 

Notes

Acknowledgments

We gratefully acknowledge the assistance of Malin Nording, Katrin Georgi, Jun Yang, and Pavel Aronov for helpful discussions and critical reading of the manuscript. This research was supported by The Åke Wibergs Stiftelse, the Fredrik and Ingrid Thurings Stiftelse, The Royal Swedish Academy of Sciences, The Swedish Council for Strategic Research, and The Swedish Research Council and the European Commission. C.E.W. was supported by a fellowship from the Centre for Allergy Research (Cfa). S. L. L. was supported by the Osher Initiative for severe Asthma.

References

  1. 1.
    Funk CD. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.PubMedCrossRefGoogle Scholar
  2. 2.
    Conrad DJ. (1999) The arachidonate 12/15 lipoxygenases. A review of tissue expression and biologic function. Clin Rev Allergy Immunol 17, 71–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Newman JW, Watanabe T, Hammock BD. (2002) The simultaneous quantification of cytochrome P450 dependent linoleate and arachidonate metabolites in urine by HPLC-MS/MS. J Lipid Res 43, 1563–1578.PubMedCrossRefGoogle Scholar
  4. 4.
    Natarajan R, Reddy MA. (2003) HETEs/EETs in renal glomerular and epithelial cell functions. Curr Opin Pharmacol 3, 198–203.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmelzer KR, Inceoglu B, Kubala L, et al. (2006) Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A 103, 13646–13651.PubMedCrossRefGoogle Scholar
  6. 6.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237, 1171–1176.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmelzer KR, Wheelock AM, Dettmer K, Morin D, Hammock BD. (2006) The role of inflammatory mediators in the synergistic toxicity of ozone and 1-nitronaphthalene in rat airways. Environ Health Perspect 114, 1354–1360.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoagland KM, Maier KG, Moreno C, Yu M, Roman RJ. (2001) Cytochrome P450 metabolites of arachidonic acid: novel regulators of renal function. Nephrol Dial Transplant 16, 2283–2285.CrossRefGoogle Scholar
  9. 9.
    Roman RJ. (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82, 131–185.PubMedGoogle Scholar
  10. 10.
    Natarajan R, Nadler JL. (2004) Lipid inflammatory mediators in diabetic vascular disease. Arterioscler Thromb Vasc Biol 24, 1542–1548.PubMedCrossRefGoogle Scholar
  11. 11.
    Hussey HJ, Tisdale MJ. (1996) Inhibition of tumour growth by lipoxygenase inhibitors. Br J Cancer 74, 683–687.PubMedCrossRefGoogle Scholar
  12. 12.
    Nie D, Tang K, Szekeres K, Trikha M, Honn KV. (2000) The role of eicosanoids in tumor growth and metastasis. Ernst Schering Res Found Workshop 31, 201–217.PubMedGoogle Scholar
  13. 13.
    Kumlin M. (1996) Analytical methods for the measurement of leukotrienes and other eicosanoids in biological samples from asthmatic subjects. J Chromatogr A 725, 29–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Powell WS, Funk CD. (1987) Metabolism of arachidonic acid and other polyunsaturated fatty acids by blood vessels. Prog Lipid Res 26, 183–210.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsukamoto H, Hishinuma T, Mikkaichi T, et al. (2002) Simultaneous quantification of prostaglandins, isoprostane and thromboxane in cell-cultured medium using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 774, 205–214.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsikas D. (1998) Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. J Chromatogr B Biomed Sci Appl 717, 201–245.PubMedCrossRefGoogle Scholar
  17. 17.
    Baranowski R, Pacha K. (2002) Gas chromatographic determination of prostaglandins. Mini Rev Med Chem 2, 135–144.PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy RC, Barkley RM, Zemski Berry K, et al. (2005) Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 346, 1–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Deems R, Buczynski MW, Bowers-Gentry R, Harkewicz R, Dennis EA. (2007) Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol 432, 59–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Blewett AJ, Varma D, Gilles T, Libonati JR, Jansen SA. (2008) Development and validation of a high-performance liquid chromatography-electrospray mass spectrometry method for the simultaneous determination of 23 eicosanoids. J Pharm Biomed Anal 46, 653–662.PubMedCrossRefGoogle Scholar
  21. 21.
    Masoodi M, Nicolaou A. (2006) Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 20, 3023–3029.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 817, 67–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang JH, Pearson T, Matharoo-Ball B, et al. (2007) Quantitative profiling of epoxyeicosatrienoic, hydroxyeicosatetraenoic, and dihydroxyeicosatetraenoic acids in human intrauterine tissues using liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 365, 40–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Han X, Gross RW. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24, 367–412.PubMedCrossRefGoogle Scholar
  25. 25.
    Wheelan P, Murphy RC. (1997) Quantitation of 5-lipoxygenase products by electrospray mass spectrometry: effect of ethanol on zymosan-stimulated production of 5-lipoxygenase products by human neutrophils. Anal Biochem 244, 110–115.PubMedCrossRefGoogle Scholar
  26. 26.
    Yue H, Jansen SA, Strauss KI, et al. (2007) A liquid chromatography/mass spectrometric method for simultaneous analysis of arachidonic acid and its endogenous eicosanoid metabolites prostaglandins, dihydroxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids in rat brain tissue. J Pharm Biomed Anal 43, 1122–1134.PubMedCrossRefGoogle Scholar
  27. 27.
    Luria A, Weldon SM, Kabcenell AK, et al. (2007) Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem 282, 2891–2898.PubMedCrossRefGoogle Scholar
  28. 28.
    Bylund J, Ericsson J, Oliw EH. (1998) Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography-mass spectrometry with ion trap MS. Anal Biochem 265, 55–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A. (2008) Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 22, 75–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Hishinuma T, Suzuki K, Saito M, et al. (2007) Simultaneous quantification of seven prostanoids using liquid chromatography/tandem mass spectrometry: the effects of arachidonic acid on prostanoid production in mouse bone marrow-derived mast cells. Prostaglandins Leukot Essent Fatty Acids 76, 321–329.PubMedCrossRefGoogle Scholar
  31. 31.
    Oliw E, Wollheim FA. (2000) [New treatment of pain and fever in rheumatoid arthritis and arthrosis. The first cyclooxygenase-2 inhibitors show promising results]. Lakartidningen 97, 2942–2944.PubMedGoogle Scholar
  32. 32.
    Kempen EC, Yang P, Felix E, Madden T, Newman RA. (2001) Simultaneous quantification of arachidonic acid metabolites in cultured tumor cells using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 297, 183–190.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang P, Chan D, Felix E, et al. (2006) Determination of endogenous tissue inflammation profiles by LC/MS/MS: COX- and LOX-derived bioactive lipids. Prostaglandins Leukot Essent Fatty Acids 75, 385–395.PubMedCrossRefGoogle Scholar
  34. 34.
    Porter NA, Caldwell SE, Mills KA. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290.PubMedCrossRefGoogle Scholar
  35. 35.
    Yin H, Porter NA. (2005) New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid Redox Signal 7, 170–184.PubMedCrossRefGoogle Scholar
  36. 36.
    Williams MV, Lee SH, Blair IA. (2005) Liquid chromatography/mass spectrometry analysis of bifunctional electrophiles and DNA adducts from vitamin C mediated decomposition of 15-hydroperoxyeicosatetraenoic acid. Rapid Commun Mass Spectrom 19, 849–858.PubMedCrossRefGoogle Scholar
  37. 37.
    Hammonds TD, Blair IA, Falck JR, Capdevila JH. (1989) Resolution of epoxyeicosatrienoate enantiomers by chiral phase chromatography. Anal Biochem 182, 300–303.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee SH, Williams MV, DuBois RN, Blair IA. (2003) Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 17, 2168–2176.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee SH, Blair IA. (2007) Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS). Methods Enzymol 433, 159–174.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee SH, Williams MV, Blair IA. (2005) Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat 77, 141–157.PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki N, Hishinuma T, Saga T, et al. (2003) Determination of urinary 12(S)-hydroxyeicosatetraenoic acid by liquid chromatography-tandem mass spectrometry with column-switching technique: sex difference in healthy volunteers and patients with diabetes mellitus. J Chromatogr B Analyt Technol Biomed Life Sci 783, 383–389.PubMedCrossRefGoogle Scholar
  42. 42.
    Wei S, Brittin JJ, Falck JR, et al. (2006) Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. Anal Biochem 352, 129–134.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiss L, Bier J, Roder Y, Weissmann N, Grimminger F, Seeger W. (2008) Direct and simultaneous profiling of epoxyeicosatrienoic acid enantiomers by capillary tandem column chiral-phase liquid chromatography with dual online photodiode array and tandem mass spectrometric detection. Anal Bioanal Chem 392, 717–726.PubMedCrossRefGoogle Scholar
  44. 44.
    Dole M, Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D. and Alice, M.B.. (1968) Molecular beams of macroions. J Chem Phys 49, 2240–2249.CrossRefGoogle Scholar
  45. 45.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Taylor G. (1964) Disintegration of water drops in an electric field. Proc R Soc London, A 280, 383–397.CrossRefGoogle Scholar
  47. 47.
    Cech NB, Enke CG. (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20, 362–387.PubMedCrossRefGoogle Scholar
  48. 48.
    Kingsley PJ, Rouzer CA, Saleh S, Marnett LJ. (2005) Simultaneous analysis of prostaglandin glyceryl esters and prostaglandins by electrospray tandem mass spectrometry. Anal Biochem 343, 203–211.PubMedCrossRefGoogle Scholar
  49. 49.
    Cui L, Isbell MA, Chawengsub Y, Falck JR, Campbell WB, Nithipatikom K. (2008) Structural characterization of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids by ESI-FTICR. J Am Soc Mass Spectrom 19, 569–585.PubMedCrossRefGoogle Scholar
  50. 50.
    Horning EC, Horning MG, Carroll DI, Dzidic I, Stillwell RN. (1973) New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal Chem 45, 936–943.CrossRefGoogle Scholar
  51. 51.
    Caroll DI, Dzidic I, Stillwell RN, Haegele KD, Horning EC. (1975) Atmospheric pressure ionization mass spectrometry: Corona discharge ion source for use in liquid chromatograph-mass spectrometer-computer analytical system. Anal Chem 47, 2369–2373.CrossRefGoogle Scholar
  52. 52.
    Montuschi P, Martello S, Felli M, Mondino C, Chiarotti M. (2004) Ion trap liquid chromatography/tandem mass spectrometry analysis of leukotriene B4 in exhaled breath condensate. Rapid Commun Mass Spectrom 18, 2723–2729.PubMedCrossRefGoogle Scholar
  53. 53.
    Koga D, Santa T, Fukushima T, Homma H, Imai K. (1997) Liquid chromatographic-atmospheric pressure chemical ionization mass spectrometric determination of anandamide and its analogs in rat brain and peripheral tissues. J Chromatogr B Biomed Sci Appl 690, 7–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenberg E. (2003) The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis. J Chromatogr A 1000, 841–889.PubMedCrossRefGoogle Scholar
  55. 55.
    Cai SS, Syage JA. (2006) Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 78, 1191–1199.PubMedCrossRefGoogle Scholar
  56. 56.
    Locke DC, Dhingra BS, Baker AD. (1982) Liquid-phase photoionization detector for liquid chromatography. Anal Chem 54, 447–450.CrossRefGoogle Scholar
  57. 57.
    Robb DB, Covey TR, Bruins AP. (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem 72, 3653–3659.PubMedCrossRefGoogle Scholar
  58. 58.
    Cai SS, Syage JA. (2006) Atmospheric pressure photoionization mass spectrometry for analysis of fatty acid and acylglycerol lipids. J Chromatogr A 1110, 15–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Short LC, Cai SS, Syage JA. (2007) APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds. J Am Soc Mass Spectrom 18, 589–599.PubMedCrossRefGoogle Scholar
  60. 60.
    Ferguson RE, MCCulloh KE, Rosenstock HM. (1965) Observation of the products of ionic collision processes and ion decomposition in a linear, pulsed time-of-flight mass spectrometer. J Chem Phys 42, 100.CrossRefGoogle Scholar
  61. 61.
    Paul W, Steinwedel HS. (1960) US Patent, 2939952.Google Scholar
  62. 62.
    Kita Y, Takahashi T, Uozumi N, Shimizu T. (2005) A multiplex quantitation method for eicosanoids and platelet-activating factor using column-switching reversed-phase liquid chromatography-tandem mass spectrometry. Anal Biochem 342, 134–143.PubMedCrossRefGoogle Scholar
  63. 63.
    Paul W. (1990) Electromagnetic traps for charged and neutral particles (nobel lecture). Angew Chem 29, 739–748.CrossRefGoogle Scholar
  64. 64.
    Stafford Jr GC, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ. (1984) Recent Improvements in Analytical Application of Advanced Ion-Trap Technology. Int J Mass Spectrom Ion Processes 60, 85–98.CrossRefGoogle Scholar
  65. 65.
    Louris J, Brodbelt-Lustig J, Cooks R, Glish G, Van Berkel G, McLuckey S. (1990) Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. Int J Mass Spectrom Ion Processes 96, 117–137.CrossRefGoogle Scholar
  66. 66.
    Liminga M, Oliw E. (2000) Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap. Lipids 35, 225–232.PubMedCrossRefGoogle Scholar
  67. 67.
    Kiss L, Roder Y, Bier J, Weissmann N, Seeger W, Grimminger F. (2008) Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Anal Bioanal Chem 390, 697–714.PubMedCrossRefGoogle Scholar
  68. 68.
    Hevko JM, Murphy RC. (2001) Electrospray ionization and tandem mass spectrometry of cysteinyl eicosanoids: leukotriene C4 and FOG7. J Am Soc Mass Spectrom 12, 763–771.PubMedCrossRefGoogle Scholar
  69. 69.
    Hong S, Lu Y, Yang R, Gotlinger KH, Petasis NA, Serhan CN. (2007) Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J Am Soc Mass Spectrom 18, 128–144.PubMedCrossRefGoogle Scholar
  70. 70.
    Thomson JJ. (1897) Cathode rays. Philos Mag 44, 29.Google Scholar
  71. 71.
    Stephens WE. (1946) Pulsed mass spectrometer with time dispersion. Phys Rev 69, 691.Google Scholar
  72. 72.
    Shui G, Bendt AK, Pethe K, Dick T, Wenk MR. (2007) Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 48, 1976–1984.PubMedCrossRefGoogle Scholar
  73. 73.
    Dickinson JS, Murphy RC. (2002) Mass spectrometric analysis of leukotriene A4 and other chemically reactive metabolites of arachidonic acid. J Am Soc Mass Spectrom 13, 1227–1234.PubMedCrossRefGoogle Scholar
  74. 74.
    Harks EG, Peters PH, van Dongen JL, van Zoelen EJ, Theuvenet AP. (2005) Autocrine production of prostaglandin F2alpha enhances phenotypic transformation of normal rat kidney fibroblasts. Am J Physiol Cell Physiol 289, C130–137.PubMedCrossRefGoogle Scholar
  75. 75.
    Laude DA. Electrospray Ionization/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. In: Cole RB, ed. Elctrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications. New York: Wiley, 1997:291–320.Google Scholar
  76. 76.
    Page JS, Masselon CD, Smith RD. (2004) FTICR mass spectrometry for qualitative and quantitative bioanalyses. Curr Opin Biotechnol 15, 3–11.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu Q, Van Orden S, Cheng X, Bakhtiar R, Smith RD. (1995) Characterization of cytochrome c variants with high-resolution FTICR mass spectrometry: correlation of fragmentation and structure. Anal Chem 67, 2498–2509.PubMedCrossRefGoogle Scholar
  78. 78.
    Flora JW, Hannis JC, Muddiman DC. (2001) High-mass accuracy of product ions produced by SORI-CID using a dual electrospray ionization source coupled with FTICR mass spectrometry. Anal Chem 73, 1247–1251.PubMedCrossRefGoogle Scholar
  79. 79.
    Hofstadler SA, Sannes-Lowery KA, Griffey RH. (1999) Infrared multiphoton dissociation in an external ion reservoir. Anal Chem 71, 2067–2070.PubMedCrossRefGoogle Scholar
  80. 80.
    Stensballe A, Jensen ON, Olsen JV, Haselmann KF, Zubarev RA. (2000) Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom 14, 1793–1800.PubMedCrossRefGoogle Scholar
  81. 81.
    Flora JW, Muddiman DC. (2004) Determination of the relative energies of activation for the dissociation of aromatic versus aliphatic phosphopeptides by ESI-FTICR-MS and IRMPD. J Am Soc Mass Spectrom 15, 121–127.PubMedCrossRefGoogle Scholar
  82. 82.
    Pfister SL, Spitzbarth N, Nithipatikom K, Edgemond WS, Falck JR, Campbell WB. (1998) Identification of the 11,14,15- and 11,12, 15-trihydroxyeicosatrienoic acids as endothelium-derived relaxing factors of rabbit aorta. J Biol Chem 273, 30879–30887.PubMedCrossRefGoogle Scholar
  83. 83.
    Pfister SL, Spitzbarth N, Zeldin DC, Lafite P, Mansuy D, Campbell WB. (2003) Rabbit aorta converts 15-HPETE to trihydroxyeicosatrienoic acids: potential role of cytochrome P450. Arch Biochem Biophys 420, 142–152.PubMedCrossRefGoogle Scholar
  84. 84.
    Falck JR, Barma DK, Mohapatra S, et al. (2004) Asymmetric synthesis of the stereoisomers of 11,12,15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid, a potent endothelium-derived vasodilator. Bioorg Med Chem Lett 14, 4987–4990.PubMedCrossRefGoogle Scholar
  85. 85.
    Kerwin JL, Torvik JJ. (1996) Identification of monohydroxy fatty acids by electrospray mass spectrometry and tandem mass spectrometry. Anal Biochem 237, 56–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Nakamura T, Bratton DL, Murphy RC. (1997) Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom 32, 888–896.PubMedCrossRefGoogle Scholar
  87. 87.
    Nakamura T, Henson PM, Murphy RC. (1998) Occurrence of oxidized metabolites of arachidonic acid esterified to phospholipids in murine lung tissue. Anal Biochem 262, 23–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Wheelan P, Zirrolli JA, Murphy RC. (1993) Low-energy fast atom bombardment tandem mass spectrometry of monohydroxy substituted unsaturated fatty acids. Biol Mass Spectrom 22, 465–473.PubMedCrossRefGoogle Scholar
  89. 89.
    Harkewicz R, Fahy E, Andreyev A, Dennis EA. (2007) Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells. J Biol Chem 282, 2899–2910.PubMedCrossRefGoogle Scholar
  90. 90.
    Hall LM, Murphy RC. (1998) Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. J Am Soc Mass Spectrom 9, 527–532.PubMedCrossRefGoogle Scholar
  91. 91.
    Currie LA. (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure and Appl Chem 67, 1699–1723.CrossRefGoogle Scholar
  92. 92.
    Revised Assessment of Detection and Quantitation Approaches; 2004. Report No.: EPA-821-B-04–005.Google Scholar
  93. 93.
    Assigning Values to Nondetected/Nonquantified Pesticide Residues in Human Health Dietary Exposure Assessments; 2000. Report No.: OPP-00570AGoogle Scholar
  94. 94.
    Song WL, Lawson JA, Wang M, Zou H, FitzGerald GA. (2007) Noninvasive assessment of the role of cyclooxygenases in cardiovascular health: a detailed HPLC/MS/MS method. Methods Enzymol 433, 51–72.PubMedCrossRefGoogle Scholar
  95. 95.
    Kishi N, Mano N, Asakawa N. (2001) Direct injection method for quantitation of endogenous leukotriene E4 in human urine by liquid chromatography/electrospray ionization tandem mass spectrometry with a column-switching technique. Anal Sci 17, 709–713.PubMedCrossRefGoogle Scholar
  96. 96.
    Saunders RD, Horrocks LA. (1984) Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. Anal Biochem 143, 71–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Folch J, Lees M, Sloane Stanley GH. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497–509.PubMedGoogle Scholar
  98. 98.
    Smith KR, Pinkerton KE, Watanabe T, Pedersen TL, Ma SJ, Hammock BD. (2005) Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci U S A 102, 2186–2191.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang J, Schmelzer K, Georgi K, Hammock B. (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem submitted.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Susanna L. Lundström
    • 1
  • Fabio L. D’Alexandri
    • 1
  • Kasem Nithipatikom
    • 2
  • Jesper Z. Haeggström
    • 1
  • Åsa M. Wheelock
    • 3
  • Craig E. Wheelock
    • 1
  1. 1.Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry IIKarolinska InstituteStockholmSweden
  2. 2.Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeUSA
  3. 3.Lung Research Lab L4:01, Respiratory Medicine Unit, Department of MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations