Advertisement

Lipidomics pp 71-86 | Cite as

Combining Lipidomics and Proteomics of Human Cerebrospinal Fluids

  • Alfred N. Fonteh
  • Rachel D. Fisher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 579)

Summary

Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.

Key words

Lipidomics Proteomics Shotgun sequencing Mass spectrometry Liquid chromatography Isotope dilution Cerebrospinal fluid 

Notes

Acknowlegments

We thank Susan Onami and Elena Oborina for technical help. We appreciate the support and critical discussion with Drs. Michael Harrington, Andreas Hulmer, and Roger Biringer. This work was supported in part by NIH grants RO1# NS43295; institutional support (HMRI), the Norris, Jamison and Glide Foundations and donations from the Dunlevey, Hezlep and Posthuma families.

References

  1. 1.
    Fonteh, A. N., Harrington0, R. J., Huhmer, A. F., Biringer, R. G., Riggins, J. N., and Harrington, M. G. (2006) Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers 22(1–2), 247–272.Google Scholar
  2. 2.
    Albers, J. J. (1978) Effect of human plasma apolipoproteins on the activity of purified lecithin:cholesterol acyltransferase. Scand J Clin Lab Invest Suppl 150, 48–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Beffert, U., Danik, M., Krzywkowski, P., Ramassamy, C., Berrada, F., and Poirier, J. (1998) The neurobiology of apolipoproteins and their receptors in the CNS and Alzheimer’s disease. Brain Res Brain Res Rev 27(2), 119–142.PubMedCrossRefGoogle Scholar
  4. 4.
    Haffner, S., Applebaum-Bowden, D., Wahl, P. W.et al. (1985) Epidemiological correlates of high density lipoprotein subfractions, apolipoproteins A-I, A-II, and D, and lecithin cholesterol acyltransferase. Effects of smoking, alcohol, and adiposity. Arteriosclerosis 5(2), 169–177.PubMedCrossRefGoogle Scholar
  5. 5.
    Bazan, N. G., and Allan, G. (1996) Platelet-activating factor is both a modulator of synaptic function and a mediator of cerebral injury and inflammation. Adv Neurol 71, 475–482.PubMedGoogle Scholar
  6. 6.
    Brady, H. R., and Serhan, C. N. (1996) Lipoxins: putative braking signals in host defense, inflammation and hypersensitivity. Curr Opin Nephrol Hypertens 5(1), 20–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Fonteh,vv A. N., and Harrington, M. G. (2004) Remodeling of arachidonate and other polyunsaturated fatty acids in Alzheimer’s disease. In: Fonteh AN, Wykle RL, editors. Arachidonate Remodeling and Inflammation. Birkhauser Verlag 145–168.Google Scholar
  8. 8.
    Ford-Hutchinson, A. W. (1990) Leukotriene B4 in inflammation. Crit Rev Immunol 10(1), 1–12.PubMedGoogle Scholar
  9. 9.
    Lefkowith, J. B. (1988) Essential fatty acid deficiency inhibits the in vivo generation of leukotriene B4 and suppresses levels of resident and elicited leukocytes in acute inflammation. J Immunol 140(1), 228–233.PubMedGoogle Scholar
  10. 10.
    O’Banion, M. K. (1999) COX-2 and Alzheimer’s disease: potential roles in inflammation and neurodegeneration. Expert Opin Investig Drugs 8(10), 1521–1536.PubMedCrossRefGoogle Scholar
  11. 11.
    Peroutka, S. J. (2005) Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv 5(5), 304–311.PubMedCrossRefGoogle Scholar
  12. 12.
    Pruzanski, W., and Vadas, P. (1989) Phospholipase A2 and inflammation. Ann Rheum Dis 48(11), 962–963.PubMedCrossRefGoogle Scholar
  13. 13.
    Serhan, C. N. (1996) Inflammation. Signalling the fat controller. Nature 384(6604), 23–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Zurier, R. B. (1993) Fatty acids, inflammation and immune responses. Prostaglandins Leukot Essent Fatty Acids 48(1), 57–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Axelrod, J. (1995) Phospholipase A2 and G proteins. Trends Neurosci 18(2), 64–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Bazan, N. G., Allan, G., and Rodriguez de Turco, E. B. (1993) Role of phospholipase A2 and membrane-derived lipid second messengers in membrane function and transcriptional activation of genes: implications in cerebral ischemia and neuronal excitability. Prog Brain Res96, 247–257.PubMedCrossRefGoogle Scholar
  17. 17.
    Bonventre, J. V. (1992) Phospholipase A2 and signal transduction. J Am Soc Nephrol 3(2), 128–150.PubMedGoogle Scholar
  18. 18.
    Clark, J. D., Schievella, A. R., Nalefski, E. A., and Lin, L. L. (1995) Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12(2–3), 83–117.PubMedCrossRefGoogle Scholar
  19. 19.
    Dennis, E. A. (2000) Phospholipase A2 in eicosanoid generation. Am J Respir Crit Care Med 161(2 Pt 2), S32–S35.PubMedGoogle Scholar
  20. 20.
    Diez, E., Chilton, F. H., Stroup, G., Mayer, R. J., Winkler, J. D., and Fonteh, A. N. (1994) Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J 301(Pt 3), 721–726.PubMedGoogle Scholar
  21. 21.
    Farooqui, A. A., Antony, P., Ong, W. Y., Horrocks, L. A., and Freysz, L. (2004) Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res Brain Res Rev 45(3), 179–195.PubMedCrossRefGoogle Scholar
  22. 22.
    Fonteh, A. N., Bass, D. A., Marshall, L. A., Seeds, M., Samet, J. M., and Chilton, F. H. (1994) Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol 152(11), 5438–5446.PubMedGoogle Scholar
  23. 23.
    Kramer, R. M., Stephenson, D. T., Roberts, E.F., and Clemens, J. A. (1996) Cytosolic phospholipase A2 (cPLA2) and lipid mediator release in the brain. J Lipid Mediat Cell Signal 14(1–3), 3–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Kudo, I., and Murakami, M. (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68–69, 3–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Cocco, L., Martelli, A. M., Gilmour, R. S., Rhee, S. G., and Manzoli, F. A. (2001) Nuclear phospholipase C and signaling. Biochim Biophys Acta 1530(1), 1–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Cockcroft, S. (2006) The latest phospholipase C, PLCeta, is implicated in neuronal function. Trends Biochem Sci 31(1), 4–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Manzoli, L., Billi, A. M., Martelli, A. M., and Cocco, L. (2004) Regulation of nuclear phospholipase C activity. Acta Biochim Pol 51(2), 391–395.PubMedGoogle Scholar
  28. 28.
    Matsushima, H., Shimohama, S., Kawamata, J., Fujimoto, S., Takenawa, T., and Kimura, J. (1998) Reduction of platelet phospholipase C-delta1 activity in Alzheimer’s disease associated with a specific apolipoprotein E genotype (epsilon3/epsilon3). Int J Mol Med 1(1), 91–93.PubMedGoogle Scholar
  29. 29.
    Minke, B. (2001) The TRP channel and phospholipase C-mediated signaling. Cell Mol Neurobiol 21(6), 629–643.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakahara, M., Shimozawa, M., Nakamura, Y., et al. (2005) A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J Biol Chem 280(32), 29128–29134.PubMedCrossRefGoogle Scholar
  31. 31.
    Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70, 281–312.PubMedCrossRefGoogle Scholar
  32. 32.
    Shimohama, S., Sasaki, Y., Fujimoto, S.et al. (1998) Phospholipase C isozymes in the human brain and their changes in Alzheimer’s disease. Neuroscience 82(4), 999–1007.PubMedCrossRefGoogle Scholar
  33. 33.
    Stewart, A. J., Mukherjee, J., Roberts, S. J., Lester, D., and Farquharson, C. (2005) Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. Int J Mol Med 15(1), 117–121.PubMedGoogle Scholar
  34. 34.
    Cockcroft, S. (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58(11), 1674–1687.PubMedCrossRefGoogle Scholar
  35. 35.
    Jenkins, G. M., and Frohman, M. A. (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19–20), 2305–2316.PubMedCrossRefGoogle Scholar
  36. 36.
    Klein, J. (2005) Functions and pathophysiological roles of phospholipase D in the brain. J Neurochem 94(6), 1473–1487.PubMedCrossRefGoogle Scholar
  37. 37.
    Xie, Z., Ho, W. T., Spellman, R., Cai, S., and Exton, J. H. (2002) Mechanisms of regulation of phospholipase D1 and D2 by the heterotrimeric G proteins G13 and Gq. J Biol Chem 277(14), 11979–11986.PubMedCrossRefGoogle Scholar
  38. 38.
    Balazy, M. (2004) Eicosanomics: targeted lipidomics of eicosanoids in biological systems. Prostaglandins Other Lipid Mediat 73(3–4), 173–180.PubMedCrossRefGoogle Scholar
  39. 39.
    Fitzpatrick, F. A., and Murphy, R. C. (1988) Cytochrome P-450 metabolism of arachidonic acid: formation and biological actions of “epoxygenase”-derived eicosanoids. Pharmacol Rev40(4), 229–241.PubMedGoogle Scholar
  40. 40.
    Lands, W. E. (1993) Eicosanoids and health. Ann N Y Acad Sci 676, 46–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Murphy, R. C. (2001) Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem Res Toxicol 14(5), 463–472.PubMedCrossRefGoogle Scholar
  42. 42.
    Serhan, C. N., Lu, Y., Hong, S., and Yang, R. (2007) Mediator lipidomics: search algorithms for eicosanoids, resolvins, and protectins. Methods Enzymol 432, 275–317.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith, W. L. (1989) The eicosanoids and their biochemical mechanisms of action. Biochem J 259(2), 315–324.PubMedGoogle Scholar
  44. 44.
    Bazan, N. G., Squinto, S. P., Braquet, P., Panetta, T., and Marcheselli, V. L. (1991) Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional signaling system. Lipids 26(12), 1236–1242.PubMedCrossRefGoogle Scholar
  45. 45.
    Benveniste, J., Chignard, M., Le Couedic, J. P., and Vargaftig, B. B. (1982) Biosynthesis of platelet-activating factor (PAF-ACETHER). II. Involvement of phospholipase A2 in the formation of PAF-ACETHER and lyso-PAF-ACETHER from rabbit platelets. Thromb Res 25(5), 375–385.PubMedCrossRefGoogle Scholar
  46. 46.
    Snyder, F. (1994) Metabolic processing of PAF. Clin Rev Allergy 12(4), 309–327.PubMedGoogle Scholar
  47. 47.
    Farooqui, A. A., Litsky, M. L., Farooqui, T., and Horrocks, L. A. (1999) Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 49(3), 139–153.PubMedCrossRefGoogle Scholar
  48. 48.
    Berenbaum, F. (1995) Phospholipase A2 inhibitors: a challenge for the future. Rev Rhum Engl Ed 62(6), 409–414.PubMedGoogle Scholar
  49. 49.
    Glaser, K. B., Lock, Y. W., and Chang, J. Y. (1991) PAF and LTB4 biosynthesis in the human neutrophil: effects of putative inhibitors of phospholipase A2 and specific inhibitors of 5- lipoxygenase. Agents Actions 34(1–2), 89–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Bligh, E. A., and Dyer, W. T. (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.PubMedCrossRefGoogle Scholar
  51. 51.
    Fonteh, A. N. (1999) Assessment of arachidonic acid distribution into phospholipids of inflammatory cells. Methods Mol Biol 120, 77–89.PubMedGoogle Scholar
  52. 52.
    Biringer, R. G., Amato, H., Harrington, M. G., Fonteh, A. N., Riggins, J. N., and Huhmer, A. F. (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5(2), 144–153.PubMedCrossRefGoogle Scholar
  53. 53.
    Wolters, D. A., Washburn, M. P., and Yates, III J.R. (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23), 5683–5690.PubMedCrossRefGoogle Scholar
  54. 54.
    Amanchy, R., Kalume, D. E., and Pandey, A. (2005) Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci STKE 267, l2.Google Scholar
  55. 55.
    Romijn, E. P., Christis, C., Wieffer, M. et al. (2005) Expression clustering reveals detailed co-expression patterns of functionally related proteins during B cell differentiation: a proteomic study using a combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 4(9), 1297–1310.PubMedCrossRefGoogle Scholar
  56. 56.
    Fonteh, A. N., Biringer, R. G., Huhmer, A. F., Rush, J. D., and Harrington, M. G. (2005) Use of [13C],[15N]-peptide standards to quantify enzymes of the Cyclooxygenase and Lipoxygenase pathways in human cerebrospinal fluids. American Society for Mass Spectrometry: Conference Proceeding 5–6(http://www.asms.org/asms05pdf/A052054.pdf).
  57. 57.
    Huhmer, A. F., Biringer, R. G., Amato, H., Fonteh, A. N., and Harrington, M. G. (2006) Protein analysis in human cerebrospinal fluid: Physiological aspects, current progress and future challenges. Dis Markers 22(1–2), 211–234.Google Scholar
  58. 58.
    Lee, S. H., and Blair, I. A. (2007) Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS). Methods Enzymol 433, 159–174.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwudke, D., Liebisch, G., Herzog, R., Schmitz, G., and Shevchenko, A. (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433, 175–191.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alfred N. Fonteh
    • 1
  • Rachel D. Fisher
    • 2
  1. 1.Molecular Neurology ProgramHuntington Medical Research InstitutesPasadenaUSA
  2. 2.Scripps CollegeClaremontUSA

Personalised recommendations