Skip to main content

Non-invasive Mapping of Lipids in Plant Tissue Using Magnetic Resonance Imaging

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 579))

Summary

Plant oil has become an important component in the search for a replacement for non-renewable energy sources, as well as being used for a wide range of industrial purposes, all in addition to its vital importance for human diet. Detailed knowledge of the lipid distribution in plants is fundamental for the understanding of local regulatory networks covering storage metabolism, and for the development of new approaches for plant breeding and transgenic research. We here review a measurement protocol or “tool” based on magnetic resonance imaging (MRI), which allows the non-invasive detection and quantitative visualization of lipid in living plant tissue. The method provides quantitative lipid maps with a resolution close to the cellular level and can be used on a wide range of plants and is applicable at the level of individual tissues, organs, or entire plants during ontogeny. Lipid imaging is designed for both biotechnology and basic science and can be combined with histological, biochemical, and gene expression analysis. Here we present the method as practiced in our group, and discuss unique advantages and limitations of the lipid-imaging tool. Seeds of barley and rapeseed were used as a model for visualization of local oil accumulation at the organ- and tissue-specific scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breithaupt H. (2006) Seeing is understanding. EMBO; Rep. 7: 467–470.

    Article  PubMed  CAS  Google Scholar 

  2. Kano H, Ishida N, Kobayashi T, Koizuml M. (1990) 1H-NMR imaging analysis of changes of free water distribution in barley and soybean seeds during maturation. Jpn. J. Crop Sci.; 59: 503–509.

    Article  Google Scholar 

  3. Pope JM, Jonas D, Walker RR. (1993) Applications of NMR micro-imaging to the study of water, lipid, and carbohydrate distribution in grape berries. Protoplasma; 173: 357–363.

    Article  Google Scholar 

  4. Baeten V, Aparicio R. (2000) Edible oils and fats authentication by Fourier transform Raman spectrometry. Biotechnol. Agron. Soc. Environ.; 4: 196–203.

    CAS  Google Scholar 

  5. Baranska M, Schulz H, Reitzenstein S, Uhlemann U, Strehle MA, Kruger H, Quilitzsch R, Foley W, Popp J. (2005) Vibrational spectroscopic studies to acquire a quality control method o f Eucalyptus essential oils. Biopolymers; 78: 237–248.

    Article  PubMed  CAS  Google Scholar 

  6. Borisjuk L, Nguyen TH, Neuberger T, Rutten T, Tschiersch H, Claus B, Feussner I, Webb AG, Jakob P, Weber H, Wobus U. and Rolletschek H. (2005) Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytol.; 167: 761–776.

    Article  PubMed  CAS  Google Scholar 

  7. Adlof, R.O. (2003) Advances in Lipid Methodology – Five. Bridgwater, Somerset: The Oily Press.

    Google Scholar 

  8. Ratcliffe RG, Shachar-Hill Y. (2001) Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Mol. Biol.; 52: 499–526.

    Article  PubMed  CAS  Google Scholar 

  9. Knothe G, Kenar JA. (2004) Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur. J. Lipid Sci. Technol.; 106: 88–96.

    Article  CAS  Google Scholar 

  10. Débarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E. (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods; 3: 47–53.

    Article  PubMed  Google Scholar 

  11. Débarre D, Beaurepaire E. (2007) Quantitative characterization of biological liquids for third-harmonic generation microscopy. Biophys. J.; 92: 603–612.

    Article  PubMed  Google Scholar 

  12. Köckenberger W, DePanfilis C, Santoro D, Dahiva P, Rawsthorne S. (2004) High resolution NMR microscopy of plants and fungi. J. Microsc.; 214: 182–189.

    Article  PubMed  Google Scholar 

  13. Neuberger T, Sreenivasulu N, Rokitta M, Rolletschek H, Göbel C, Rutten T, Radchuk V, Feussner I, Wobus U, Jakob P, Webb A, Borisjuk L. (2008) Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnol. J.; 6: 31–45

    PubMed  Google Scholar 

  14. Ishida N, Koizumi M, Kano H. (2000) The NMR microscope: a unique and promising tool for plant science. Ann. Bot.; 86: 259–278.

    Article  CAS  Google Scholar 

  15. Van der Weerd L, Claessens MAE, Ruttink T, Vergeldt FJ, Schaafsma TJ, Van As H. (2001) Quantitative NMR microscopy of osmotic stress responses in maize and pearl millet. J. Exp. Bot.; 52: 2333–2343.

    Article  PubMed  Google Scholar 

  16. Van As H. (2007) Intact plant MRI for the study of water relations, membrane, permeability, cell-to-cell and long distance water transport. J. Exp. Bot.; 58: 743–756

    PubMed  Google Scholar 

  17. Huang AHC. (1992) Oil bodies and oleosins in seeds. Annu. Rev. Plant Physiol. Mol. Biol.; 43: 177–200.

    Article  CAS  Google Scholar 

  18. Webb AG. (1997) Radiofrequency microcoils in magnetic resonance. Prog. NMR Spectrosc.; 31: 1–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to P. Jakob and U. Wobus for support and critical discussion, G. Melkus, A. Purea, and V. C. Behr for help with the MRI. I. Feussner and C. Göbel are acknowledged for help with gas chromatography. Our special thanks to T. Rutten for electron microscopy, U. Tiemann and K. Lipfert for artwork and A. Stegmann for excellent technical assistance. We are grateful for funding by the Deutsche Forschungsgemeinschaft (Project number RO 2411/2–1/2–2 and BO 1917/2–1), and the Federal Ministry of Education and Research (BMBF; GABI SEED II grant). Andrew G. Webb and Thomas Neuberger acknowledge support of the Alexander von Humboldt Stiftung, Wolfgang Paul Preis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Neuberger, T., Rolletschek, H., Webb, A., Borisjuk, L. (2009). Non-invasive Mapping of Lipids in Plant Tissue Using Magnetic Resonance Imaging. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology, vol 579. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-322-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-322-0_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-321-3

  • Online ISBN: 978-1-60761-322-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics