Lipidomics pp 469-482 | Cite as

The Use of Charged Aerosol Detection with HPLC for the Measurement of Lipids

  • Marc Plante
  • Bruce Bailey
  • Ian Acworth
Part of the Methods in Molecular Biology book series (MIMB, volume 579)


A gradient HPLC-charged aerosol detection method was applied to the measurement of different lipids including: free fatty acids, fatty alcohols, glycerides, steroids, phospholipids, and fat-soluble vitamins. An algal oil sample is used as an example. Charged aerosol detection offers a new approach to the routine analysis of any nonvolatile lipid. It shows low ng (on column) sensitivity, a dynamic range of over four orders of magnitude, good reproducibility, gradient compatibility, and similar analyte response for nonvolatile species, independent of chemical structure. Furthermore, charged aerosol detection uses mobile phases that are fully compatible with LC–MS – enabling both detectors to be used in a “lipidomics platform.”

Key words

Lipids Fatty acids Fatty alcohols Fat-soluble vitamins Biofuels Algal oils Charged aerosol detection Corona HPLC 


  1. 1.
    Fahy, E., Subramaniam, S., Brown, A., Glass, C., Merrill, A., Murphy, R., Raetz, C., Russell, D., Seyama, Y., Shaw, W., Shimizu, T., Spencer, F., van Meer, G., VanNieuwenhze, M., White, S., Witztum, J., and Dennis, E. (2005). A comprehensive classification system for lipids. J. Lipid Res., 46, 839–861.PubMedCrossRefGoogle Scholar
  2. 2.
    Watson, A. (2006). Lipidomics: A global approach to lipid analysis in biological systems. J. Lipid Res., 47, 2101–2110.PubMedCrossRefGoogle Scholar
  3. 3.
    Stryer, L. (2006). Biochemistry, 6th Edition, W.H. Freeman and Co., New York.Google Scholar
  4. 4.
    Acworth, I. N. (2003). The Handbook of Redox Biochemistry. CD-ROM. ESA Biosciences. Part number: 70–6090.Google Scholar
  5. 5.
    Wenk, M. (2005). The emerging field of lipidomics. Nat. Rev. Drug Discov., 4, 594–610.PubMedCrossRefGoogle Scholar
  6. 6.
    Seppanen-Laakso, T., and Oresic, M. (2008). How to study lipidomes. J. Mol. Endocrinol. In press.Google Scholar
  7. 7.
    van Meer, G., (2005). Cellular lipidomics. EMBO J., 24, 3159–3165.PubMedCrossRefGoogle Scholar
  8. 8.
    Wenk, M.R. (2005) The emerging field of lipidomics. Nature, 4, 594–610.CrossRefGoogle Scholar
  9. 9.
    Morreau, R. (2006). The analysis of lipids via HPLC with a charged aerosol detector. Lipids, 41, 727–734.CrossRefGoogle Scholar
  10. 10.
    Cascone, A., Eerola, S., Ritieni, A., and Rizzo, A. (2006). Development of analytical procedures to study changes in the composition of meat phospholipids caused by induced oxidation. J. Chromatogr. A, 1120, 211–220.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramosa, R.G., Libonga, D., Rakotomangab, M., Gaudina, K., Loiseaub, P.M., Chaminade, P. (2008). Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J. Chromatogr. A, 1209, 88–94.CrossRefGoogle Scholar
  12. 12.
    Liu, X-K., Fang, J.B., Cauchon, N., Zhou, P.. (2008). Direct stability-indicating method development and validation for analysis of etidronate disodium using mixed-mode column and charged aerosol detector. J. Pharm. Biomed. Anal., 46, 639–644PubMedCrossRefGoogle Scholar
  13. 13.
    Nair, L.M., Werling, J.O. (2009). Aerosol based detectors for the investigation of phospholipid hydrolysis in a pharmaceutical suspension formulation. J. Pharm. Biomed. Anal., 49(1), 95–99.PubMedCrossRefGoogle Scholar
  14. 14.
    Snyder, L.R., Kirkland, J.J., Glajch, J.L. (1997). Practical HPLC Method Development, Second Edition, Wiley, New Jersey.Google Scholar
  15. 15.
    Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P., Pint, E. (2007). Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 146(1,2), 60–78.CrossRefGoogle Scholar
  16. 16.
    Crafts, C., Bailey, B., Plante, M., Acworth, I. (2009). Evaluation of method for the simultaneous analysis of cations and anions using HPLC with charged aerosol detection and a zwitterionic stationary phase. J. Chromatogr. Sci. In Print.Google Scholar
  17. 17.
    Miroslav, L., Lynen, F, Hoľcapek, M., and Sandra, P. (2007). Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J. Chromatogr. A, 1176, 135–142.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marc Plante
    • 1
  • Bruce Bailey
    • 1
  • Ian Acworth
    • 2
  1. 1.Applications DepartmentESA Biosciences, Inc.ChelmsfordUSA
  2. 2.ESA Biosciences, Inc.ChelmsfordUSA

Personalised recommendations