Advertisement

Lipidomics pp 315-336 | Cite as

Determination of Fatty Acid Profiles and TAGs in Vegetable Oils by MALDI-TOF/MS Fingerprinting

  • Zeev Wiesman
  • Bishnu P. Chapagain
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 579)

Summary

Vegetable oils are complex mixtures containing a wide range of major compounds. Triacylglycerols (TAGs; consisting of a glycerol moiety with each hydroxyl group esterified to a fatty acid) are the major components (95–98%) of vegetable oils. TAGs are an important source of energy and nutrition for humans, so their compositional analysis merits extensive interest. Analysis of TAGs has increased in recent years and the advancement has been driven by the development of analytical technologies. This chapter discusses techniques for determination of TAG and fatty acid profiles (FAPs) of vegetable oils using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS) and gas chromatography–mass spectrometry (GC/MS). Considering the importance of TAG in its native form, rather than FAPs, special emphasis has been given to the TAG fingerprinting analyses of intact oils. MALDI-TOF/MS also enabled calculation of the main fatty acids and their compositions in a simple manner from the TAG profiles; the results are found to be very similar to the prevailing methods of derivatization using GC/MS. This study depicts the potential of MALDI-TOF/MS as an easy, fast, and reliable technique to characterize the TAG and FAPs in vegetable oils.

Key words

Vegetable oils Fatty acid profiles Triacylglycerols MALDI-TOF/MS GC/MS 

Notes

Acknowledgments

The authors would like to thank the Ramat Negev Desert Agro Station for providing the olive oil samples. Our appreciation to Dr. Mark Karpasas, Dr. Leonid Kagon, Ms Maya Kaufman, and Ms Shosh Avni for technical help, and Ms Edna Oxman in editing this manuscript.

References

  1. 1.
    Fadavi, A., Barzegar, M. and Azizi, M. H. (2006) Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J Food Compos Anal 19, 676–80.CrossRefGoogle Scholar
  2. 2.
    Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H. Jr., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L. and Dennis, E. A. (2005) A comprehensive classification system for lipids. J Lipid Res 46, 839–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Kiritsakis, A. K. (1998) Olive Oil from the Tree to the Table 2nd Edition. Food & Nutrition Press Inc., Trumbull, CT.Google Scholar
  4. 4.
    Foutanzza, G., Patumi, M., Solinas, M. and Serraiocco, A. (1994) Influence of cultivars on the composition and quality of olive oil. Acta Hort 356, 358–61.Google Scholar
  5. 5.
    Wiesman, Z., Itzhak, D. and Ben-Dom, N. (2004) Optimization of saline water for sustainable Barnea olive and oil production in desert conditions. Sci Horti 100, 257–66.CrossRefGoogle Scholar
  6. 6.
    Calvano, C. D., Palmisano, F. and Zambonin, C. G. (2005) Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun Mass Spectrom 19, 1315–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Mu, H. and Porsgaard, T. (2005) The metabolism of structured triacylglycerols (Review). Prog Lipid Res 44, 430–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki, R., Noguchi, R., Ota, T., Abe, M., Miyashita, K. and Kawada, T. (2001) Cytotoxic effect of conjugated trienoic fatty acids in mouse tumor and human monocytic leukemia cells. Lipids 36, 477–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Kritchevsky, D. (1995) Fatty acids, triglyceride structure, and lipid metabolism. J Nutr Biochem 6, 172–78.CrossRefGoogle Scholar
  10. 10.
    Bracco, U. (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60, 1002S–9S.PubMedGoogle Scholar
  11. 11.
    Laakso, P. (2002) Mass spectrometry of triacylglycrols. Eur J Lipid Sci Technol 104, 43–49.CrossRefGoogle Scholar
  12. 12.
    Buchgraber, M., Ulberth, F., Emons, H. and Anklam, E. (2004) Triacyglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 106, 21–48.CrossRefGoogle Scholar
  13. 13.
    Ayorinde, F. O., Garvin, K. and Saeed, K. (2000) Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14, 608–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Danno, H., Jinco, Y., Budiyanto, S., Furkawa, Y. and Kimura, S. (1992) A simple enzymatic quantitative analysis of triglycerides in tissues. J Nutr Sci Viaminol 38, 517–21.CrossRefGoogle Scholar
  15. 15.
    Stübiger, G., Pittenauer, E. and Allmaier, G. (2003) Characterisation of castor oil by on-line and off-line non-aqueous reverse-phase high performance liquid chromatography–mass spectrometry (APCI and UV/MALDI). Phytochem Anal 14, 337–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Schiller, J. and Arnold, K. (2000) Mass Spectrometry in Structural Biology. In: Meyers RA, ed. Encyclopedia of Analytical Chemistry. New York: Wiley, 559–85.Google Scholar
  17. 17.
    Nordhoff, E., Kirpekar, F., Karas, M., Cramer, R., Hahner, S. and Hillenkamp, F. (1994) Comparison of IR- and UV-matrix-assisted laser desorption/ionization mass spectrometry of oligodeoxynucleotides. Nucl Acids Res 22, 2460–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Schiller, J., Arnold, J., Benard, S., Müller, M., Reichl, S. and Arnold, K. (1999) Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem 267, 46–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaufman, M. and Wiesman, Z. (2007) Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylaglycerol finger printing. J Agric Food Chem 55, 10405–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Asbury, G. R., Al-Saad, K., Siems, W. F., Hannan, R. M. and Hill, H. H. (1999) Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom 10, 983–91.CrossRefGoogle Scholar
  21. 21.
    Zollner, P., Schmid, E. R. and Allmaier, G. (1996) K4[Fe(CN)6]/Glycerol – A new liquid matrix system for matrix-assisted laser desorption/ionization mass spectrometry of hydrophobic compounds. Rapid Commun Mass Spectrom 10, 1278–82.CrossRefGoogle Scholar
  22. 22.
    Lay, J. O. Jr., Liyanage, R., Durham, B. and Brooks, J. (2006) Rapid characterization of edible oils by direct matrix assisted laser desorption/ionization time-of-flight mass spectrometry analysis using triacylglycerols. Rapid Commun Mass Spectrom 20, 952–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Mannina, L., Dugo, G., Salvo, F., Cicero, L., Ansanelli, G., Clcagni, C. and Segre, A. (2003) Study of the cultivare-compostionship in siciian olive oils by GC, NMR and statistical methods. J Agric Food Chem 51, 120–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Luchetti, F. (2002) Importance and future of olive oil in the world market-an introduction to olive oil. Eur J Lipid Sci Technol 104, 559–63.CrossRefGoogle Scholar
  25. 25.
    Renaud, S., de Lorgeril, M., Delaye, M., Guidollet, J., Jacquard, F., Mamelle, N., Martin, J. L., Monjaud, I., Salen, P. and Toubol, P. (1995) Cretan Mediterranean diet for prevention of coronary heart disease. Am J Clin Nutr 61, 1360S–67S.PubMedGoogle Scholar
  26. 26.
    IOOC (International Olive Oil Council). (1995) Trade standard applying to olive oil and olivepomace oil. COI/T.15/NC no. 2/Rev. 2.Google Scholar
  27. 27.
    Schiller, J. (2007) MALDI MS of Lipids. In: Hellenkamp F, Preter-Katalinic J eds. MALDI MS a Practical Guide to Instrumentation, Methods and Applications. Weinheim: Wiley-VCH, Verlag GmbH & Co. kGaA, 215–43.Google Scholar
  28. 28.
    Calvano, C. S., Aresta, A., Palmisano, F. and Zambonin, C. G. (2007) A laser desorption inonization time-of-flight mass spectrometry investigation into triacylglycerols oxidation during thermal stressing of edible oils. Anal Bioanal Chem 389, 2075–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Fedeli, E. (1977) Lipids of olives. Prog Chem Fats Lipids 15, 57–74.CrossRefGoogle Scholar
  30. 30.
    Kiritsakis, A., Kanavouras, A. and Kiritsakis, K. (2002) Chemical analysis, quality control and packaging issues of olive oil. Eur J Lipid Sci Technol 104, 628–38.CrossRefGoogle Scholar
  31. 31.
    Cunha, S. C. and Oliveira, M. B. P. (2006) Discrimination of vegetable oils by triacylglycerols evaluation of profile using HPLC/ELSD. Food Chem 95, 518–24.CrossRefGoogle Scholar
  32. 32.
    Jakab, A., Nagy, K., Keberger, K., Vekey, K. and Forgacs, E. (2002) Differentiation of vegetable oils by mass spectrometry combined with statistical analysis. Rapid Commun Mass Spectrom 16, 2291–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Rezanka, T., and Rezankova, H. (1999) Characterization of fatty acids and triacylglycerols in vegetable oils by gas chromatography and statistical analysis. Anal Chim Acta 398, 253–61.CrossRefGoogle Scholar
  34. 34.
    Schubert, S. Y., Lansky, E. P. and Neeman, I. (1999) Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J Ethnopharmacol 66, 7–11.CrossRefGoogle Scholar
  35. 35.
    Kohno, H., Suzuki, R., Yasui, Y., Hosokawa, M., Miyashita, K. and Tanaka, T. (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 95, 481–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Lansky, E. P., Harrison, G., Froom, P. and Jiang, W. G. (2005) Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel™. Invest New Drugs 23, 121–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Arao, K., Yotsumoto, H., Seo-Young, H., Koji, N. and Teruyoshi, Y. (2004) The 9-cis, 11-trans, 13-cis isomer of cojugated linolenic acid reduces apolipoprotein B100 secretion and triacylglycerol synthesis in HepG2 cells. Biosci Biotechnol Biochem 68, 2634–45.CrossRefGoogle Scholar
  38. 38.
    IOOC (International Olive Oil Council) (2003) Trade standard applying to olive oil and olivepomace oil. COI/T.15/NC no. 3/Rev. 2 . Google Scholar
  39. 39.
    AOCS Official Methods (1997) Cd 1–25, Cd 3–25, Ce 2– 66.Google Scholar
  40. 40.
    Takagi, T. and Itabashi, Y. (1981) Occurrence of mixtures of geometrical isomers of conjugated octadecatrienoic acids in some seed oils: analysis by open-tubular gas liquid chromatography and high performance liquid chromatography. Lipids 16, 546–51.CrossRefGoogle Scholar
  41. 41.
    Ozugul-Yucel, S. (2005) Determination of conjugated linolenic acid content of selected oil seeds frown in Turkey. J Am Oil Chem Soc 82, 893–897.CrossRefGoogle Scholar
  42. 42.
    Christie, W. W. (2007) Lipid Library http://www.lipidlibrary.co.uk/ms/arch_me/me_pufa/M)6779.htm
  43. 43.
    Guyon, F., Absalon, C., Eloy, A., Salagoity, M. H. and Esclapez, M. (2003) Comparative study of matrix-assisted laser desorption/ionization and gas chromatography for quantitative determination of cocoa butter and cocoa butter equivalent triacylglycerol composition. Rapid Commun Mass Spectrom 17, 2317–2332.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zeev Wiesman
    • 1
  • Bishnu P. Chapagain
    • 1
  1. 1.Phyto-Lipid Biotechnology Lab, Department of Biotechnology EngineeringThe Institutes for Applied Research, Ben Gurion University of the NegrevBeer-ShevaIsrael

Personalised recommendations