Lipidomics pp 287-313 | Cite as

Qualitative and Quantitative Analyses of Phospholipids by LC–MS for Lipidomics

  • Hiroki Nakanishi
  • Hideo Ogiso
  • Ryo Taguchi
Part of the Methods in Molecular Biology book series (MIMB, volume 579)


In this chapter we are going to mention about three different approaches in lipidomics and how to effectively profile or calculate the amounts of phospholipids from major molecular species up to minor ones.
  1. 1)

    Precise identification and profiling of individual molecular species of phospholipids by data-dependent LC–ESIMS/MS combination with “Lipid Search”. We have been using this method as a global analysis of phospholipid. We usually applied this method at least once for new biological samples. We constructed an automated search engine, “Lipid Search”, for identification and profiling of phospholipids. Once after applying this analysis, a specified retention time can be obtained for each elution peak of individual phospholipid molecular species. Thus, reproducible identification results can be effectively obtained by our search engine from the data obtained by single LC or combination of LC with specified head group survey by using precursor ion scanning or neutral loss scanning.

  2. 2)

    An effective analytical method of LC–ESIMS for the identification of acidic phospholipids such as phosphatidic acid and phosphatidylserine. This is an approach of how to obtain sharp chromatographic peaks for acidic lipids such as phosphatidic acid and phosphatidylserine that are normally detected as broad elution peaks. With this improvement very small amount of molecular species in minor acidic phospholipids were effectively obtained.

  3. 3)

    Identification and profiling of molecular species in focused phospholipids. Third one is a combination analysis of focused methods such as precursor ion scanning or neutral loss scanning and high efficient LC separation. As reported previously, different combinations of fatty acids on sn-1 and sn-2 can be mostly detected as separate peaks by reverse phase LC–ESIMS. Detection limit of precursor ion scanning or neutral loss scanning is more than ten times higher than that of the method without LC separation, because of decreased ion suppression. We will mention about application of this methods for focused analysis on phosphatidylethanolamine-plasmalogens.


Key words

Quantitative analysis Phospholipid Lipidomics Liquid chromatography Mass spectrometry Search engine 



This study was performed with the help of Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.


  1. 1.
    Kim, H. Y., Wang, T. L., and Ma, Y. C. (1994) Lipid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 66, 3977–3982.PubMedCrossRefGoogle Scholar
  2. 2.
    Pulfer, M., and Murphy, R. C. (2003) Electrospray mass spectrometry of phospholipids. Mass. Spectrom. Rev. 22, 332–364.PubMedCrossRefGoogle Scholar
  3. 3.
    Han, X., and Gross, R. W. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass. Spectrom. Rev. 24, 367–412.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwudke, D., Liebisch, G., Herzog, R., Schmitz, G., and Shevchenko, A. (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol. 433, 175–191.PubMedCrossRefGoogle Scholar
  5. 5.
    Taguchi, R., Nishijima, M., and Shimizu, T. (2007) Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 432, 185–211.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikeda, K., Shimizu, T., and Taguchi, R. (2008) Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J. Lipid Res. 49, 2678–2689.PubMedCrossRefGoogle Scholar
  7. 7.
    Houjou, T., Yamatani, K., Imagawa, M., Shimizu, T., and Taguchi, R. (2005) A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 654–666.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao, C., Du, G., Skowronek, K., Frohman, M. A., and Bar-Sagi, D. (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712.PubMedGoogle Scholar
  9. 9.
    Balasubramanian, K., Mirnikjoo, B., and Schroit, A. J. (2007) Regulated externalization of phosphatidylserine at the cell surface. J. Biol. Chem. 282, 18357–18364.PubMedCrossRefGoogle Scholar
  10. 10.
    Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., and Inoue, K. (1999) Molecular cloning and characterization of a novel human g-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 274, 27776–27785.PubMedCrossRefGoogle Scholar
  11. 11.
    Parrill, A. L., Wang, D., Bautista, D. L., Van Brocklyn, J. R., Lorincz, Z., Fischer, D. J., Baker, D. L., Liliom, K., Spiegel, S., and Tigyi, G. (2000) Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. J. Biol. Chem. 275, 39379–39384.PubMedCrossRefGoogle Scholar
  12. 12.
    Park, K. S., Lee, H., Kim, M., Shin, E. H., Jo, S. H., Kim, S. D., Im, D., and Bae, Y. (2006) Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric g-proteins. Mol. Pharmacol. 69, 1066–1073.PubMedGoogle Scholar
  13. 13.
    Kim, H., Wang, T. L., and Ma, Y. (1994) Lipid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 66, 3977–3982.PubMedCrossRefGoogle Scholar
  14. 14.
    Taguchi, R., Houjou, T., Nakanishi, H., Yamazaki, T., Ishida, M., Imagawa, M., and Shimizu, T. (2005) Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B. 823, 26–36.CrossRefGoogle Scholar
  15. 15.
    Larsen, A., Mokastet, E., Lundanes, E., and Hvattum, E. (2002) Separation and identification of phosphatidylserine molecular speciesusing reversed-phase high-performance liquid chromatography with evaporative light scattering and mass spectrometric detection. J. Chromatogr. B. 774, 115–120.CrossRefGoogle Scholar
  16. 16.
    Ogiso, H., Suzuki, T., and Taguchi, R. (2008) Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal. Biochem. 375, 124–131.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagan, N., and Zoeller, R. A. (2001) Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199–229.PubMedCrossRefGoogle Scholar
  18. 18.
    Brites, P., Waterham, H. R., and Wanders, R. J. A. (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta 1636, 219–231.PubMedCrossRefGoogle Scholar
  19. 19.
    Han, X., Holtzman, D. M., and McKeel, D. W. Jr. (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77, 1168–1180.PubMedCrossRefGoogle Scholar
  20. 20.
    Kerwin, J. L., Tuininga, A. R., and Ericsson, L. H. (1994) Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 35, 1102–14.PubMedGoogle Scholar
  21. 21.
    Zemski Berry, K. A., and Murphy, R. C. (2004) Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J. Am. Soc. Mass Spectrom. 15, 1499–1508PubMedCrossRefGoogle Scholar
  22. 22.
    Hsu, F. F., and Turk, J. (2007) Differentiation of 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 18,, 2065–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang, K., Zhao, Z., Gross, R. W., and Han, X. (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE 2, e1368.PubMedCrossRefGoogle Scholar
  24. 24.
    Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37, 911–917.Google Scholar
  25. 25.
    Rouser, G., Kritchevsky, G., Yamamoto, A., Simon, G., Galli, C., and Bauman, A. J. (1969) Diethyaminoethyl and triethylaminoethyl cellulose column chromatographic procedures for phospholipids, glycolipids, and pigments. Methods Enzymol. 14, 273–317.Google Scholar
  26. 26.
    Wakelam, M. J. O., Pettitt, T. R., and Postle, A. D. (2007) Lipidomic analysis of signaling pathways. Methods Enzymol. 432, 233–246.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiao, Y., Chen, Y., Kennedy, A. W., Belinson, J., and Xu, Y. (2000) Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry analyses. Ann. N. Y. Acad. Sci. 905, 242–259.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishida, M., Imagawa, M., Shimizu, T., and Taguchi, R. (2005) Effective extraction and analysis for lysophosphatidic acids and their precursors in human plasma using electrospray ionization mass spectrometry. J. Mass Spectrom. Soc. Jpn. 54, 217–226.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hiroki Nakanishi
    • 1
  • Hideo Ogiso
    • 1
  • Ryo Taguchi
    • 1
  1. 1.Department of Metabolome, Graduate School of MedicineThe University of Tokyo and Core Research for Evolutional Science and TechnologySaitamaJapan

Personalised recommendations