Lipidomics pp 261-270 | Cite as

A Novel Role for Nutrition in the Alteration of Functional Microdomains on the Cell Surface

  • Wooki Kim
  • Robert S. Chapkin
  • Rola Barhoumi
  • David W. L. Ma
Part of the Methods in Molecular Biology book series (MIMB, volume 579)


Membrane rafts are ordered microdomains of the plasma membrane consisting of cholesterol, sphingolipids, and saturated fatty acids which appear to regulate many cellular signaling pathways. One such type of membrane raft is caveolae, which are cave-like invaginations of the plasma membrane. Interestingly, changes in the acyl composition of cellular membranes have been shown to alter the specific localization of membrane raft associated proteins and their function. This is noteworthy because modification of membrane acyl composition is readily accomplished through changes in dietary fat composition. Here we describe a common approach used to fractionate cell membranes to obtain an enriched preparation of caveolae and gas chromatographic techniques to determine fatty acyl composition. In addition, methods used to visualize and quantify lipid rafts using a fluorescent probe Laurdan in living cells will also be described.

Key words

Caveolae Fatty acids Laurdan Lipid rafts Membrane rafts Nutrition 



Supported in part by NIH grants CA59034, CA129444, DK071707, and P30ES09106 to R.S. Chapkin and a Natural Sciences and Engineering Research Council of Canada Discovery Grant to D.W.L. Ma.


  1. 1.
    Pike, L. J. (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47: 1597–1598.PubMedCrossRefGoogle Scholar
  2. 2.
    Ma, D. W., Seo, J., Davidson, L. A., Callaway, E. S., Fan, Y. Y., Lupton, J. R. & Chapkin, R. S. (2004) n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J. 18: 1040–1042.PubMedCrossRefGoogle Scholar
  3. 3.
    Ma, D. W. (2007) Lipid mediators in membrane rafts are important determinants of human health and disease. Appl. Physiol Nutr. Metab 32: 341–350.PubMedCrossRefGoogle Scholar
  4. 4.
    Ma, D. W. L., Seo, J., Switzer, K. C., Fan, Y. Y., McMurray, D. N., Lupton, J. R. & Chapkin, R. S. (2004) n-3 PUFA and Membrane Microdomains: A New Frontier in Bioactive Lipid Research. J. Nutr. Biochem. 15: 700–706.PubMedCrossRefGoogle Scholar
  5. 5.
    Fan, Y. Y., McMurray, D. N., Ly, L. H. & Chapkin, R. S. (2003) Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J. Nutr. 133: 1913–1920.PubMedGoogle Scholar
  6. 6.
    Fan, Y. Y., Ly, L. H., Barhoumi, R., McMurray, D. N. & Chapkin, R. S. (2004) Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J. Immunol. 173: 6151–6160.PubMedGoogle Scholar
  7. 7.
    Schley, P. D., Brindley, D. N. & Field, C. J. (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J. Nutr. 137: 548–553.PubMedGoogle Scholar
  8. 8.
    Michaely, P. A., Mineo, C., Ying, Y. S. & Anderson, R. G. (1999) Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J. Biol. Chem. 274: 21430–21436.PubMedCrossRefGoogle Scholar
  9. 9.
    Smart, E. J., Ying, Y. S., Mineo, C. & Anderson, R. G. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. U S A 92: 10104–10108.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, W., Fan, Y. Y., Barhoumi, R., Smith, R., McMurray, D. N.,& Chapkin, R. S. (2008). n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. J. Immunol. 181: 6236–6243.PubMedGoogle Scholar
  11. 11.
    Harder, T., Scheiffele, P., Verkade, P. & Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141: 929–942.PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson, R. G. (1998). The caveolae membrane system. Annu. Rev. Biochem. 67: 199–225.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M.. (2000). Observing FcepsilonRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149: 1131–1142.PubMedCrossRefGoogle Scholar
  14. 14.
    Kenworthy, A. K., Petranova, N. & Edidin M. (2000). High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11: 1645–1655.PubMedGoogle Scholar
  15. 15.
    Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W.,Harder, T.. (2005). Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171: 121–131.PubMedCrossRefGoogle Scholar
  16. 16.
    Gaus, K., Zech, T.,& Harder, T. (2006). Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol. Membr. Biol. 23: 41–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Rentero, C., Zech, T., Quinn, C. M., Engelhardt, K., Williamson, D., Grewal, T., Jessup, W., Harder, T. & Gaus, K.. (2008). Functional implications of plasma membrane condensation for T cell activation. PLoS ONE 3: e2262.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wooki Kim
    • 1
    • 2
  • Robert S. Chapkin
    • 3
  • Rola Barhoumi
    • 1
    • 2
  • David W. L. Ma
    • 1
    • 2
  1. 1.Department of Nutritional SciencesUniversity of Toronto Faculty of MedicineTorontoCanada
  2. 2.Center for Environmental and Rural HealthTexas A&M UniversityCollege StationUSA
  3. 3.Program in Integrative Nutrition & Complex Diseases, Genomics & Bioinformatics Facility Core Center for Environmental and Rural HealthKieberg Biotechnology Center, Texas A&M UniversityCollege StationUSA

Personalised recommendations