Advertisement

Lipidomics pp 201-219 | Cite as

Lipidomic Analysis of Biological Samples by Liquid Chromatography Coupled to Mass Spectrometry

  • Giuseppe Astarita
  • Faizy Ahmed
  • Daniele Piomelli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 579)

Summary

Lipidomics studies the large-scale changes in nonwater-soluble metabolites (lipids) accompanying perturbations of biological systems. Because lipids are involved in crucial biological mechanisms, there is a growing scientific interest in using lipidomic approaches to understand the regulation of the lipid meta-bolism in all eukaryotic and prokaryotic organisms. Lipidomics is a powerful tool in system biology that can be used together with genomics, transcriptomics, and proteomics to answer biological questions arising from various scientific areas such as environmental sciences, pharmacology, nutrition, biophysics, cell biology, physiology, pathology, and disease diagnostics. One of the main challenges for lipidomic analysis is the range of concentrations and chemical complexity of different lipid species. In this chapter, we present a lipidomic approach that combines sample preparation, chromatographic, and intrasource ionization separation coupled to mass spectrometry for analyzing a broad-range of lipid molecules in biological samples.

Key words

Lipidomics Lipids Liquid chromatography mass spectrometry Fatty acids Phospholipids Cholesterol Lipid profile Lipid biomarkers Large-scale analysis 

Notes

Acknowledgments

The contribution of the Agilent Technologies/University of California Irvine Analytical Discovery Facility, Center for Drug Discovery and the Agilent Technologies Foundation are gratefully acknowledged. This work was supported by grants from the National Institute of Health (R21DA-022702, R01DK-073955, R01 DA-012413, R01DA-012447, RR274–297/3504008, RR274–305/3505998, 1RL1AA017538 to D.P.).

References

  1. 1.
    Piomelli D, Astarita G, Rapaka R. (2007) A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 8, 743–754.PubMedCrossRefGoogle Scholar
  2. 2.
    Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang X. (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front. Biosci. 12, 2494–2506.PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson JK, Holmes E, Wilson ID. (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Micro. 3, 431–438.CrossRefGoogle Scholar
  4. 4.
    Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. (2005) Metabolic footprinting and systems biology: the medium is the message. Nat. Rev. Micro. 3, 557–565.CrossRefGoogle Scholar
  5. 5.
    Lin CY, Viant MR, Tjeerdema RS. (2006) Metabolomics: Methodologies and applications in the environmental sciences. J. Pest. S. 31, 245–251.CrossRefGoogle Scholar
  6. 6.
    Whitfield PD, German AJ, Noble PM. (2004) Metabolomics: an emerging post-genomic tool for nutrition. Br J Nutr. 92, 549–555.PubMedCrossRefGoogle Scholar
  7. 7.
    German JB, Roberts M, Watkins SM. (2003) Personal metabolomics as a next generation nutritional assessment. J. Nutr. 133, 4260–4266.PubMedGoogle Scholar
  8. 8.
    Han X. (2007) An update on lipidomics: progress and application in biomarker and drug development. Curr. Opin. Mol. Ther. 9, 586–591.PubMedGoogle Scholar
  9. 9.
    Rapaka RS. (2005) Targeted lipidomics and drug abuse research. Prostaglandins Other Lipid Mediat. 77, 219–222.PubMedCrossRefGoogle Scholar
  10. 10.
    Jung K, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D. (2007) A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol. Pharmacol. 72, 612–621.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen C, Shah YM, Morimura K, Krausz KW, Miyazaki M, Richardson TA, Morgan ET, Ntambi JM, Idle JR, Gonzalez FJ. (2008) Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 7,135–147.PubMedCrossRefGoogle Scholar
  12. 12.
    Epand RM. (2008) Proteins and cholesterol-rich domains. Biochim. Biophys. Acta. 1778, 1576–1582.CrossRefGoogle Scholar
  13. 13.
    Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA. (2007) The emergence of yeast lipidomics. Biochim. Biophys. Acta. 1771, 241–254.PubMedCrossRefGoogle Scholar
  14. 14.
    Rabinowitz JD. Cellular metabolomics of Escherchia coli. (2007) Expert Rev. Proteomics. 4, 187–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Meer GV. (2005) Cellular lipidomics. EMBO J. 24, 3159–3165.PubMedCrossRefGoogle Scholar
  16. 16.
    Hunt AN. (2006) Dynamic lipidomics of the nucleus. J. Cell. Biochem. 97, 244–251.PubMedCrossRefGoogle Scholar
  17. 17.
    Astarita G, Ahmed F, Piomelli D. (2008) Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J. Lipid Res. 49, 48–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Astarita G, Rourke BC, Andersen JB, Fu J, Kim JH, Bennett AF, Hicks JW, Piomelli D. (2006) Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1407–1412.PubMedCrossRefGoogle Scholar
  19. 19.
    Walker JM, Krey JF, Chen JS, Vefring E, Jahnsen JA, Bradshaw H, Huang SM. (2005) Targeted lipidomics: fatty acid amides and pain modulation. Prostaglandins Other Lipid Mediat. 77, 35–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Serhan CN. (2005) Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77, 4–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan KR. (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry. 12, 934–945.PubMedCrossRefGoogle Scholar
  22. 22.
    Adibhatla R, Hatcher J, Dempsey R. (2006) Lipids and lipidomics in brain injury and diseases. AAPS J. 8, E314-E321.PubMedGoogle Scholar
  23. 23.
    Wenk MR. (2005) The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610.PubMedCrossRefGoogle Scholar
  24. 24.
    Ackermann B, Hale J, Duffin K. (2006) The role of mass spectrometry in biomarker discovery and measurement. Curr. Drug Metab. 7, 525–539.PubMedCrossRefGoogle Scholar
  25. 25.
    Fonteh A, Harrington R, Huhmer A, Biringer RG, Riggins JN, Harrington MG. (2006) Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers. 22, 39–64.PubMedGoogle Scholar
  26. 26.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA. (2005) A comprehensive classification system for lipids. J Lipid Res. 46, 839–861.PubMedCrossRefGoogle Scholar
  27. 27.
    Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, Piomelli D. (2007) Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J. Biol. Chem. 282, 1518–1528.PubMedCrossRefGoogle Scholar
  28. 28.
    Fuhrman BJ, Barba M, Krogh V, Micheli A, Pala V, Lauria R, Chajes V, Riboli E, Sieri S, Berrino F, Muti P. (2006) Erythrocyte Membrane Phospholipid Composition as a Biomarker of Dietary Fat. Ann. Nutr. Met. 50, 95–102.CrossRefGoogle Scholar
  29. 29.
    Keshavan MS, Mallinger AG, Pettegrew JW, Dippold C. (1993) Erythrocyte membrane phospholipids in psychotic patients. Psychiatry Res. 49, 89–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Kirkland JJ, Truszkowski FA, Dilks CH, Engel GS. (2000) Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. J. Chromatogr. A. 890, 3–13.CrossRefGoogle Scholar
  31. 31.
    Barroso B, Bischoff R. (2005) LC-MS analysis of phospholipids and lysophospholipids in human bronchoalveolar lavage fluid. J. Chromatogr. B. 814, 21–28.CrossRefGoogle Scholar
  32. 32.
    Hodson L, Skeaff CM, Wallace AJ, Arribas GLB. (2002) Stability of plasma and erythrocyte fatty acid composition during cold storage. Clin. Chim. Acta. 321, 63–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Lau O, Wong S. (2000) Contamination in food from packaging material. J. Chromatogr. A. 882, 255–270.PubMedCrossRefGoogle Scholar
  34. 34.
    German JB, Gillies LA, Smilowitz JT, Zivkovic AM, Watkins SM. (2007) Lipidomics and lipid profiling in metabolomics. Curr. Opin. Lipidol. 18, 66–71.PubMedGoogle Scholar
  35. 35.
    Han X, Gross RW. (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics. 2, 253–264.PubMedCrossRefGoogle Scholar
  36. 36.
    Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146.PubMedCrossRefGoogle Scholar
  37. 37.
    Hara A, Radin NS. (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420–426.PubMedCrossRefGoogle Scholar
  38. 38.
    Lin J, Liu L, Yang M, Lee M. (2004) Ethyl acetate/Ethyl alcohol mixtures as an alternative to Folch reagent for extracting animal lipids. J. Agric. Food Chem. 52, 4984–4986.PubMedCrossRefGoogle Scholar
  39. 39.
    Boorman GA. (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ. Health Perspect. 107, 207–217.PubMedGoogle Scholar
  40. 40.
    Greim H, Reuter U. (2001) Classification of carcinogenic chemicals in the work area by the German MAK Commission: current examples for the new categories. Toxicology. 166, 11–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Wenk M, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, De Camilli P. (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21, 813–817.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Giuseppe Astarita
    • 1
  • Faizy Ahmed
    • 2
  • Daniele Piomelli
    • 1
  1. 1.Department of PharmacologyUniversity of California – IrvineIrvineUSA
  2. 2.Agilent Technologies, Irvine/Agilent Analytical Discovery FacilityUniversity of California – IrvineIrvineUSA

Personalised recommendations