Skip to main content

Ligand Macromolecule Interactions: Theoretical Principles of Molecular Recognition

  • Protocol
  • First Online:
Ligand-Macromolecular Interactions in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 572))

Summary

Molecular recognition is mediated by three main factors: surface complementarity, thermodynamics, and associated physicochemical properties. These principles are responsible for ligand–target binding and therefore serve as the foundation for the design of new biologically relevant chemical entities. As these principles are involved in nearly all biological processes, a firm understanding of the details involved in binding is necessary for drug design. The consideration of these factors individually has proven useful; however, the combined effect of these governing principles is most important. And despite extensive studies, there are still many gaps in our understanding of this recognition process. The aim of this chapter is to introduce the basic concepts of ligand binding to set the stage for the following chapters, while briefly discussing fundamental techniques of drug design, including the indispensable tools of molecular modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27, 2985–2993

    Article  Google Scholar 

  2. Koshland, D. (1958). Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 44, 98

    PubMed  CAS  Google Scholar 

  3. Gellman, S. H. (1997). Introduction: molecular recognition. Chem Rev 97, 1231–1232

    Article  PubMed  CAS  Google Scholar 

  4. Lehn, J. M. (1993). Supramolecular chemistry. Science 260, 1762–1763

    Article  PubMed  CAS  Google Scholar 

  5. Schneider, H. J. and Yatsimirski, A. (2002). Principles and methods in supramolecular chemistry. Chichester: Wiley

    Google Scholar 

  6. Steed, J. W. and Atwood, J. L. (2000). Supra-molecular chemistry. Chichester: Wiley

    Google Scholar 

  7. Oshovsky, G. V., Reinhoudt, D. N. and Verboom, W. (2007). Supramolecular chemistry in water. Angew. Chem. Int. Ed. Engl. 46, 2366–2393

    Article  PubMed  CAS  Google Scholar 

  8. Retrieved from http://nobelprize.org/nobel_prizes/chemistry/laureates/1987/

  9. Chervenak, M. C. and Toone, E. J. (1994). A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. Chem. Soc. 116, 10533–10539

    Article  CAS  Google Scholar 

  10. Fisher, H. F. and Singh, N. (1995). Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol 259, 194–221

    Article  PubMed  CAS  Google Scholar 

  11. Murphy, K. P., Xie, D., Thompson, K. S., Amzel, L. M., et al. (1994). Entropy in biological binding processes: estimation of translational entropy loss. Proteins 15, 113–120

    Article  Google Scholar 

  12. Gilli, P., Ferretti, V., Gilli, G., and Borea, P. A. (1994). Enthalpy-entropy compensation in drug receptor binding. J. Phys. Chem. 98, 1515–1518

    Article  CAS  Google Scholar 

  13. Brady, P. B. and Sharp, K. A. (1997). Entropy in protein folding and in protein-protein interactions. Curr. Opin. Struct. Biol. 7, 215–221

    Article  PubMed  CAS  Google Scholar 

  14. Page, M. I. and Jencks, W. P. (1971). Entropic contributions to rate acceleration in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. U.S.A. 68, 1678–1683

    Article  PubMed  CAS  Google Scholar 

  15. Searle, M. S. and Williams, D. H. (1992). The cost of conformational order: entropy changes in molecular associations. J. Am. Chem. Soc. 114, 10690–10697

    Article  CAS  Google Scholar 

  16. Jeffrey, G. A. and Saenger, W. (1991). Hydrogen bonding in biological structures. Berlin: Springer

    Book  Google Scholar 

  17. Frank, H. S. and Evans, M. W. (1945). Free volume and entropy in condensed systems III. J. Chem. Phys. 13, 507

    Google Scholar 

  18. Nicholls, A., Mobley, D. L., Guthrie, J. P., Chodera, J. D., et al. (2008). Predicting small-molecule solvation free energies: an informal blind test fro computational chemistry. J. Med. Chem. 1, 769–779

    Article  Google Scholar 

  19. Poornima, C. S. and Dean, P. M. (1995). Conserved water molecules at the ligand-binding sites of homologous proteins. J. Comput. Aided Mol. Des. 9, 500–512

    Article  PubMed  CAS  Google Scholar 

  20. Amadasi, A., Surface, J. A., Spyrakis, F., Cozzini, P., et al. (2008). Robust classification of “relevant” water molecules in putative protein binding sites. J. Med. Chem. 51, 1063–1067

    Article  PubMed  CAS  Google Scholar 

  21. Pauling, L. (1939). The nature of the chemical bond and the structure of molecules and crystals. Ithaca, NY: Cornell University Press

    Google Scholar 

  22. Platts, J. A., Howard, S. T. and Bracke, B. R. (1996). Directionality of hydrogen bonds to sulfur and oxygen. J. Am. Chem. Soc. 118, 2726–2733

    Article  CAS  Google Scholar 

  23. Warshel, A., Papazyan, A., Kollman, P. A., Cleland, W. W., et al. (1995). On low-barrier hydrogen bonds and enzyme catalysis. Science 269, 102–106

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, R. and Kennard, O. (1984). Hydrogen-bond geometry in organic crystals. Acc. Chem. Res. 17, 320–326

    Article  CAS  Google Scholar 

  25. Mcdonald, I. K. and Thornton, J. M. (1994). Satisfying hydrogen bonding potentials in proteins. J. Mol. Biol. 238, 777–793

    Article  PubMed  CAS  Google Scholar 

  26. Vega, S., Kang, L.-W., Velazquez-Campoy, A., Kiso, Y., et al. (2004). A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Proteins 55, 594–602

    Article  PubMed  CAS  Google Scholar 

  27. Nishio, M. and Hirota, M. (1989). CH/π interaction: implication in organic chemistry. Tetrahedron 45, 7201–7245

    Article  CAS  Google Scholar 

  28. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., et al. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879

    Article  PubMed  CAS  Google Scholar 

  29. Dougherty, D. A. (1996). Cation/π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168

    Article  PubMed  CAS  Google Scholar 

  30. Gallivan, J. P. and Dougherty, D. A. (1999). Cation/π interactions in structural biology. Proc. Natl. Acad. Sci. U.S.A. 96, 9459–9464

    Article  PubMed  CAS  Google Scholar 

  31. Ma, J. C. and Dougherty, D. A. (1997). The cation/π interaction. Chem. Rev. 97, 1303–1324

    Article  PubMed  CAS  Google Scholar 

  32. Blokzijl, W. and Engberts, J. (1993). Hydrophobic effects. Opinion and facts. Angew. Chem. Int. Ed. Engl. 32, 1545–1579

    Article  Google Scholar 

  33. Urzhumtsev, A., Tete-Favier, F., Mitschler, A., Barbanton, J., et al. (1997). A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 5, 601–612

    Article  PubMed  CAS  Google Scholar 

  34. Mccurdy, C. R., Le Bourdonnec, B., Metzger, T. G., El Kouhen, R., et al. (2002). Naphthalene dicarboxaldehyde as an electrophilic fluorogenic moiety for affinity labeling: application to opioid receptor affinity labels with greatly improved fluorogenic properties. J. Med. Chem. 45, 2887–2890

    Article  PubMed  CAS  Google Scholar 

  35. White, R. J., Margolis, P. S., Trias, J. and Yuan, Z. (2003). Targeting metalloenzymes: a strategy that works. Curr. Opin. Pharmacol. 3, 502–507

    Article  PubMed  CAS  Google Scholar 

  36. Pearson, R. G. (1963). Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539

    Article  CAS  Google Scholar 

  37. Sabat, M. (1990). Ternary metal ion-nucleic acid base protein complexes. In: Sigel, H. and Sigel, A. (Eds.), Metal ions in biological systems. New York: Marcel Dekker, pp. 521

    Google Scholar 

  38. Friedman, H. L. (1951). Influence of isosteric replacements upon biological activity. N ASNRS 206, 295−358

    Google Scholar 

  39. Burger, A. (1991). Isosterism and bioisosterism in drug design. Prog. Drug. Res. 37, 287–371

    PubMed  CAS  Google Scholar 

  40. Langmuir, I. (1919). Isomorphism, isosterism, and covalence. J. Am. Chem. Soc. 41, 1543–1559

    Article  CAS  Google Scholar 

  41. Patani, G. A. and LaVoie, E. J. (1996). Bioisosterism: a rational approach in drug design. Chem. Rev. 96, 3147–3176

    Article  PubMed  CAS  Google Scholar 

  42. Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P., et al. (2005). Docking: Succe-sses and challenges. Curr. Pharm. Des. 11, 323–333

    Article  PubMed  CAS  Google Scholar 

  43. Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., et al. (2004). Lessons in molecular recognition: The effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem. 47, 45–55

    Article  PubMed  CAS  Google Scholar 

  44. Xu, H. and Agrafiotis, D. K. (2002). Retrospect and prospect of virtual screening in drug discovery. Curr. Top. Med. Chem. 2, 1305–1320

    Article  PubMed  CAS  Google Scholar 

  45. Patny, A., Desai, P. V. and Avery, M. A. (2006). Homology modeling of G-protein-coupled receptors and implications in drug design. Curr. Med. Chem. 13, 1667–1691

    Article  PubMed  CAS  Google Scholar 

  46. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., et al. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745

    Article  PubMed  CAS  Google Scholar 

  47. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., et al. (2007). High-resolution crystal structure of an engineered human B2 adrenergic G protein-coupled receptor. Science 318, 1258–1265

    Article  PubMed  CAS  Google Scholar 

  48. Rasmussen, S. G., Choi, H.-J., Rosenbaum, D. M., Kobilka, T. S., et al. (2007). Crystal structure of the human B2 adrenergic G protein-coupled receptor. Nature 450, 383–387

    Article  PubMed  CAS  Google Scholar 

  49. Kubinyi, H. (2002). From narcosis to hyperspace: the history of QSAR. Quant. Struct.-Act. Relat. 21, 348–356

    Article  CAS  Google Scholar 

  50. Hansch, C. and Fujita, T. (1964). A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626

    Article  CAS  Google Scholar 

  51. Kubinyi, H. (1997). QSAR and 3D QSAR in drug design. Part 1: methodology. Drug Discov. Today 2, 457–467

    Article  CAS  Google Scholar 

  52. Kubinyi, H. (1997). QSAR and 3D QSAR in drug design. Part 2: applications and problems. Drug Discov. Today 2, 538–546

    Article  CAS  Google Scholar 

  53. Good, A. C., Mason, J. S. and Pickett, S. D. (2000). Pharmacophore pattern application in virtual screening, library design, and QSAR. In: Bohm, H.-J. and Schneider, G. (Eds.), Virtual screening for bioactive molecules. Weinheim: Wiley-VCH

    Google Scholar 

  54. Kurogi, Y. and Guner, O. F. (2001). Pharmacophore modeling and three-dimensional database searching for drug design using Catalyst. Curr. Med. Chem. 8, 1035–1055

    Article  PubMed  CAS  Google Scholar 

  55. Portoghese, P. S. (1992). The role of concepts in structure-activity relationship studies of opioid ligands. J. Med. Chem. 35, 1927–1937

    Article  PubMed  CAS  Google Scholar 

  56. Tamiz, A. P., Zhang, J., Zhang, M., Wang, C. Z., et al. (2000). Application of the bivalent ligand approach to the design of novel dimeric serotonin reuptake inhibitors. J. Am. Chem. Soc. 122, 5393

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Nolan, T., Singh, N., McCurdy, C.R. (2010). Ligand Macromolecule Interactions: Theoretical Principles of Molecular Recognition. In: Roque, A. (eds) Ligand-Macromolecular Interactions in Drug Discovery. Methods in Molecular Biology, vol 572. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-244-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-244-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-243-8

  • Online ISBN: 978-1-60761-244-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics