Skip to main content

Ligand–Macromolecule Interactions in Live Cells by Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Ligand-Macromolecular Interactions in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 572))

  • 2942 Accesses

Summary

The receptor concept is the primary theoretical basis for modern pharmacology. Drugs, hormones, neurotransmitters, toxin, and other biologically active substances are referred to as ligands. Ligands exert their actions by way of interaction with receptors/macromolecules. The resulting receptor/macromolecule–ligand complexes produce alterations in physiological processes. Receptor/macromolecule-binding studies most often require the use of radioactively labeled ligands. When the numbers of receptors/macromolecules are few per cell, it is impossible to detect the specific binding because of a high background. Specific interactions between certain ligands and their receptors/macromolecules are, therefore, often overlooked by the conventional binding technique. Fluorescence correlation spectroscopy (FCS) allows detection a ligand–macromolecule interaction in live cells in a tiny confocal volume element (0.2 femtoliter (fL)) at single-molecule detection sensitivity. FCS permits the identification of macromolecules that were not possible to detect before by isotope labeling. The beauty of the FCS technique is that there is no need for separating an unbound ligand from a bound one to calculate the macromolecule bound and free ligand fractions. This study will demonstrate FCS as a sensitive and a rapid technique to study ligand–macromolecule interaction in live cells using fluorescently labeled ligands (Fl-L). This study is of pharmaceutical significance since FCS assay of ligand–macromolecule interactions in live cells is one step forward toward a high throughput drug screening in cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigler, R., Mets, U., Widengren, J., and Kask, P. (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175

    Article  CAS  Google Scholar 

  2. Eigen, M. and Rigler, R. (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U.S.A. 91, 5740–5747

    Article  PubMed  CAS  Google Scholar 

  3. Rigler, R. (1995) Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J. Biotech. 41, 177–186

    Article  CAS  Google Scholar 

  4. Pramanik, A. and Widengren, J. (2004) Fluorescence correlation spectroscopy (FCS). In: Meyers, R. A. (ed.), Encyclopedia of Molecular Cell Biology and Molecular Medicine. Willey-VCH, Weinheim, pp. 461–500

    Google Scholar 

  5. Widengren, J. and Rigler, R. (1998) Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell Mol. Biol. 44, 857–879

    PubMed  CAS  Google Scholar 

  6. Pramanik, A., Juréus, A., Langel, Ü., Bartfai, T. and Rigler, R. (1999) Galanin receptor binding in the membranes of cultured cells measured by fluorescence correlation spectroscopy. Biomed. Chromatogr. 13, 119–120

    Article  CAS  Google Scholar 

  7. Boonen, G., Pramanik, A., Rigler, R. and Häberlein, H. (2000) Evidence for specific interactions between a kavain derivative and human cortical neurons measured by fluorescence correlation spectroscopy. Planta Med. 66, 7–10

    Article  PubMed  CAS  Google Scholar 

  8. Pramanik, A. and Rigler, R. (2001) Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem. 382, 371–378

    Article  PubMed  CAS  Google Scholar 

  9. Pramanik, A. and Rigler, R. (2001) FCS-assay of ligand-receptor interactions in living cells. In: Rigler, R. and Elson, E. L. (eds.), Fluorescence Correlation Spectroscopy (FCS). Theory and Applications. Springer, Berlin Heidelberg, pp. 101–112

    Chapter  Google Scholar 

  10. Pramanik, A., Ekberg, K., Zhong, Z, Shabqat, J., Henriksson, M., Tibell, A., Tally, M., Wahren, J., Jörnvall, H., Rigler, R. and Johansson, J. (2001). C-peptide binding to human cell membranes: importance of Glu27. Biochem. Biophys. Res. Commun. 284, 94–98

    Article  PubMed  CAS  Google Scholar 

  11. Zhong, Z., Pramanik, A., Ekberg, K., Kratz, G., Wahren, J. and Rigler, R. (2001) Insulin binding monitored by fluorescence correlation spectroscopy. Diabetologia 44, 1184–1188

    Article  PubMed  CAS  Google Scholar 

  12. Dittrich, P., Malvezzi-Campeggi, F., Jahnz, M. and Schwille, P. (2001) Accessing molecular dynamics in cells by fluorescence correlation spectroscopy. Biol. Chem. 382, 491–494

    Article  PubMed  CAS  Google Scholar 

  13. Waizenegger, T., Fischer, R. and Brock, R. (2002) Intracellular concentration measurements in adherent cells: a comparison of import efficiencies of cell-permeable peptides. Biol.Chem. 383, 291–299

    Article  PubMed  CAS  Google Scholar 

  14. Chen, Y., Muller, J.D., Ruan, Q. and Gratton, E. (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J. 82, 133–144

    Article  PubMed  CAS  Google Scholar 

  15. Pick, H., Preuss, A.K., Mayer, M., Wohland, T., Hovius, R. and Vogel, H. (2003) Monitoring expression and clustering of the ionotropic 5HT(3) receptor in plasma membranes of live biological cells. Biochem. 42, 877–884

    Article  CAS  Google Scholar 

  16. Meissner, O. and Haberlein, H. (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42, 1667–1672

    Article  PubMed  CAS  Google Scholar 

  17. Halbsguth, C., Meissner, O. and Haberlein, H.H. (2003) Positive cooperation of protoberberine type 2 alkaloids from Corydalis cava on the GABA(A) binding site. Planta Med. 69, 305–309

    Article  PubMed  CAS  Google Scholar 

  18. Haustein, E. and Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods (Duluth). 29, 153–166

    Article  CAS  Google Scholar 

  19. Bacia, K. and Schwille, P. (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods (Duluth). 29, 74–85

    Article  CAS  Google Scholar 

  20. Weiss, M., Hashimoto, H. and Nilsson, T. (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84, 4043–4052

    Article  PubMed  CAS  Google Scholar 

  21. Provencher, S.W. (1982) Contin: a general purpose constrained regulation program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229–242

    Article  Google Scholar 

Download references

Acknowledgments

I dedicate this article to the memory of my cousin Shahjahan Ali, B.Sc. in Chemistry, M.A. in English, AGM (Assistant General Manager) of Sonali Bank, Bangladesh, who expired in 2004 by “stroke” at the age of 54. I have his efforts and inspiration to thank for my becoming what I always wanted to be. This work was financially supported by grants from the Swedish Medical Research Council, and the Novo Nordisk and the Karolinska institute Foundations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Pramanik, A. (2010). Ligand–Macromolecule Interactions in Live Cells by Fluorescence Correlation Spectroscopy. In: Roque, A. (eds) Ligand-Macromolecular Interactions in Drug Discovery. Methods in Molecular Biology, vol 572. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-244-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-244-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-243-8

  • Online ISBN: 978-1-60761-244-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics