Skip to main content

Application of 2D-DIGE in Cancer Proteomics Toward Personalized Medicine

  • Protocol
  • First Online:
Reverse Chemical Genetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 577))

Summary

Two-dimensional difference gel electrophoresis (2D-DIGE) is an advanced variation of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE); protein samples are labeled with different fluorescent dyes, mixed and separated by 2D-PAGE. 2D-DIGE solves major inherent drawbacks of 2D-PAGE, demonstrating great utility in biomarker studies. Biomarker development requires quantitative, reproducible, highly sensitive and high-throughput experimental platforms, and 2D-DIGE meets these criteria. Here we demonstrate the advantages of 2D-DIGE and discuss the possibilities 2D-DIGE offers for further, more comprehensive proteome studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes DR, Chinnaiyan AM. (2005) Integrative analysis of the cancer trasncriptome. Nat Genet 37, S31–7.

    Article  PubMed  CAS  Google Scholar 

  2. Hanash SM. (2003) Operomics: molecular analysis of tissues from DNA to RNA to protein. Clin Chem Lab Med 38, 805–13.

    Article  Google Scholar 

  3. Orntoft TF, Thykjaer T, Waldman FM, Wolf H, Celis JE. (2002) Genome-wide study of gene copy numbers, transcripts, and protein levels in pairs of non-invasive and invasive human transitional cell carcinomas. Mol Cell Proteomics 1, 37–45.

    Article  PubMed  CAS  Google Scholar 

  4. Varambally S, Yu J, Laxman B, et al. (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406.

    Article  PubMed  CAS  Google Scholar 

  5. Chen G, Gharib TG, Huang CC, et al. (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1, 304–13.

    Article  PubMed  CAS  Google Scholar 

  6. Wang X, Yu J, Sreekumar A, et al. (2005) Autoantibody signatures in prostate cancer.N Engl J Med 353, 1224–35.

    Article  PubMed  CAS  Google Scholar 

  7. Nam MJ, Madoz-Gurpide J, Wang H, et al. (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3, 2108–15.

    Article  PubMed  CAS  Google Scholar 

  8. Hanash S. (2003) Harnessing immunity for cancer marker discovery. Nat Biotechnol 21, 37–8.

    Article  PubMed  CAS  Google Scholar 

  9. Shin BK, Wang H, Hanash S. (2002) Proteomics approaches to uncover the repertoire of circulating biomarkers for breast cancer. J Mammary Gland Biol Neoplasia 7, 407–13.

    Article  PubMed  Google Scholar 

  10. Le Naour F, Brichory F, Misek DE, Brechot C, Hanash SM, Beretta L. (2002) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 1, 197–203.

    Article  Google Scholar 

  11. Le Naour F, Misek DE, Krause MC, et al. (2001) Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res 7, 3328–35.

    Google Scholar 

  12. Brichory FM, Misek DE, Yim AM, et al. (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S A 98, 9824–9.

    Article  PubMed  CAS  Google Scholar 

  13. Brichory F, Beer D, Le Naour F, Giordano T, Hanash S. (2001) Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res 61, 7908–12.

    PubMed  CAS  Google Scholar 

  14. Prasannan L, Misek DE, Hinderer R, Michon J, Geiger JD, Hanash SM. (2000) Identification of beta-tubulin isoforms as tumor antigens in neuroblastoma. Clin Cancer Res 6, 3949–56.

    PubMed  CAS  Google Scholar 

  15. Okano T, Kondo T, Fujii K, et al. (2007) Proteomic signature corresponding to the response to gefitinib (Iressa, ZD1839), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, and mutation in EGFR in lung adenocarcinoma. Clin Cancer Res 13, 799–805.

    Article  PubMed  CAS  Google Scholar 

  16. Suehara Y, Suehara Y, Kondo T, et al. (2008) Pfetin as a prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics.Clin Cancer Res 14, 1707–17.

    Article  PubMed  CAS  Google Scholar 

  17. Hatakeyama H, Kondo T, Fujii K, et al. (2006) Protein clusters associated with carcinogenesis, histological differentiation and nodal metastasis in esophageal cancer. Proteomics 6, 6300–16.

    Article  PubMed  CAS  Google Scholar 

  18. Yokoo H, Kondo T, Okano T, et al. (2007) Protein expression associated with early intrahepatic recurrence of hepatocellular carcinoma after curative surgery. Cancer Sci 98, 665–73.

    Article  PubMed  CAS  Google Scholar 

  19. Kondo T, Hirohashi S. (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 1, 2940–56.

    Article  PubMed  CAS  Google Scholar 

  20. Gorg A, Weiss W, Dunn MJ. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–85.

    Article  PubMed  Google Scholar 

  21. O’Farrell PH. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–21.

    PubMed  Google Scholar 

  22. Klose J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–43.

    PubMed  CAS  Google Scholar 

  23. Bravo R, Celis JE. (1982) Human proteins sensitive to neoplastic transformation in cultured epithelial and fibroblast cells. Clin Chem 28, 949–54.

    PubMed  CAS  Google Scholar 

  24. Fey SJ, Larsen PM, Celis JE. (1983) Evidence for coordinated phosphorylation of keratins and vimentin during mitosis in transformed human amnion cells. Phosphate turnover of modified proteins. FEBS Lett 157, 165–9.

    Article  PubMed  CAS  Google Scholar 

  25. Bravo R, Celis JE. (1982) Up-dated catalogue of HeLa cell proteins: percentages and characteristics of the major cell polypeptides labeled with a mixture of 16 14C-labeled amino acids. Clin Chem 28, 766–81.

    PubMed  CAS  Google Scholar 

  26. Litin BS, Grimes WJ. (1979) Two-dimensional electrophoresis of membrane proteins from normal and transformed cells. Cancer Res 39, 2595–603.

    PubMed  CAS  Google Scholar 

  27. Gorg A, Postel W, Gunther S. (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–46.

    Article  PubMed  CAS  Google Scholar 

  28. Righetti PG. (1990) Immobiline pH Gradients: Theory and Methodology. Amsterdam: Elsevier.

    Google Scholar 

  29. Molloy MP, Herbert BR, Walsh BJ, et al. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837–44.

    Article  PubMed  CAS  Google Scholar 

  30. Rabilloud T, Adessi C, Giraudel A, Lunardi J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–16.

    Article  PubMed  CAS  Google Scholar 

  31. Herbert B. (1999) Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20, 660–3.

    Article  PubMed  CAS  Google Scholar 

  32. Rabilloud T, Valette C, Lawrence JJ. (1994) Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552–8.

    Article  PubMed  CAS  Google Scholar 

  33. Carrette O, Burkhard PR, Sanchez JC, Hochstrasser DF. (2006) Stat-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nature Protocols 1, 812–23.

    Article  PubMed  CAS  Google Scholar 

  34. Chen G, Gharib TG, Huang CC, et al. (2002) Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res 8, 2298–305.

    PubMed  CAS  Google Scholar 

  35. Gharib TG, Chen G, Wang H, et al. (2002) Proteomic analysis of cytokeratin isoforms uncovers association with survival in lung adenocarcinoma. Neoplasia 4, 440–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hanash S. (2001) 2-D or not 2-D – is there a future for 2-D gels in proteomics? Insights from the York proteomics meeting. Proteomics 1, 635–7.

    PubMed  CAS  Google Scholar 

  37. Young DA, Voris BP, Maytin EV, Colbert RA. (1983) Very-high-resolution two-dimensional electrophoretic separation of proteins on giant gels. Methods Enzymol 91, 190–214.

    Article  PubMed  CAS  Google Scholar 

  38. Gorg A, Boguth G, Kopf A, Reil G, Parlar H, Weiss W. (2002) Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2, 1652–7.

    Article  PubMed  CAS  Google Scholar 

  39. Wildgruber R, Harder A, Obermaier C, et al. (2002) Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21, 2610–6.

    Article  Google Scholar 

  40. Emmert-Buck MR, Bonner RF, Smith PD, et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  41. Banks RE, Dunn MJ, Forbes MA, et al. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis – preliminary findings. Electrophoresis 20, 689–700.

    Article  PubMed  CAS  Google Scholar 

  42. Craven RA, Totty N, Harnden P, Selby PJ, Banks RE. (2002) Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am J Pathol 160, 815–22.

    Article  PubMed  CAS  Google Scholar 

  43. Unlu M, Morgan ME, Minden JS. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–7.

    Article  PubMed  CAS  Google Scholar 

  44. Okano T, Kondo T, Kakisaka T, et al. (2006) Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE). Proteomics 6, 3938–48.

    Article  PubMed  CAS  Google Scholar 

  45. Shaw J, Rowlinson R, Nickson J, et al. (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–95.

    Article  PubMed  CAS  Google Scholar 

  46. Kondo T, Seike M, Mori Y, Fujii K, Yamada T, Hirohashi S. (2003) Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics 3, 1758–66.

    Article  PubMed  CAS  Google Scholar 

  47. Seike M, Kondo T, Fujii K, et al. (2005) Proteomic signatures for histological types of lung cancer. Proteomics 5, 2939–48.

    Article  PubMed  CAS  Google Scholar 

  48. Sitek B, Luttges J, Marcus K, et al. (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5, 2665–79.

    Article  PubMed  CAS  Google Scholar 

  49. Greengauz-Roberts O, Stoppler H, Nomura S, et al. (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5, 1746–57.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson KE, Marouga R, Prime JE, et al. (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5, 3851–8.

    Article  PubMed  CAS  Google Scholar 

  51. Suehara Y, Kondo T, Fujii K, et al. (2006) Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas. Proteomics 6, 4402–9.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203, 173–9.

    Article  PubMed  CAS  Google Scholar 

  53. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–80.

    Article  PubMed  CAS  Google Scholar 

  54. Rhodes DR, Kalyana-Sundaram S, Tomlins SA, et al. (2007) Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9, 443–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Health, Labor, and Welfare and by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation of Japan. We appreciate Dr. Hisao Asamura (National Cancer Center Hospital) for an excellent photograph of surgical operation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kondo, T., Hirohashi, S. (2009). Application of 2D-DIGE in Cancer Proteomics Toward Personalized Medicine. In: Koga, H. (eds) Reverse Chemical Genetics. Methods in Molecular Biology™, vol 577. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-232-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-232-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-231-5

  • Online ISBN: 978-1-60761-232-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics