Skip to main content

Lignocellulosic Biomass Pretreatment Using AFEX

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 581))


Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin–hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Gray, K.A. Zhao, L., Emptage, M. (2006) Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146

    Article  CAS  Google Scholar 

  2. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J. Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T. (2006) The path forward for biofuels and biomaterials. Science. 311, 484–489

    Article  CAS  Google Scholar 

  3. Ohara, H. (2003) Biorefinery. Appl. Microbiol. Biotechnol. 62, 474–477

    Article  CAS  Google Scholar 

  4. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686

    Article  CAS  Google Scholar 

  5. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y. (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959–1966

    Article  CAS  Google Scholar 

  6. Dale, B.E. (1986) Method for increasing the reactivity and digestibility of cellulose with ammonia. US Patent 4,600,590

    Google Scholar 

  7. Teymouri, F., Laureano-Perez, L., Alizadeh, H., Dale, B.E. (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 2014–2018

    Article  CAS  Google Scholar 

  8. Gollapalli, L.E., Dale, B.E., Rivers, D.M. (2002) Predicting digestibility of ammonia fiber explosion (AFEX) treated rice straw. Appl. Biochem. Biotechnol. 98–100, 23–35

    Article  Google Scholar 

  9. O’Connor, J.J. (1972) Ammonia explosion pulping: a new fiber separation process. Tappi, 55, 353

    Google Scholar 

  10. Sulbaran de Ferrer, B., Aristiguieta, M., Dale, B.E., Ferrer, A., Ojada de Rodriguez (2003) Enzymatic hydrolysis of ammonia-treated rice straw. Appl. Biochem. Biotechnol. 105–108, 155–164

    Article  Google Scholar 

  11. Eggeman, T., Elander, R.T. (2005) Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96, 2019–2025

    Article  CAS  Google Scholar 

  12. Alizadeh, H., Teymouri, F., Gilbert, T.I., Dale, B.E. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX) Appl. Biochem. Biotechnol. 121, 1133–1142

    Article  Google Scholar 

  13. Bals, B., Dale, B.E., and Venkatesh, B. (2006) Enzymatic hydrolysis of distiller’s dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy Fuels, 20, 2732–2736

    Article  CAS  Google Scholar 

  14. Chundawat, S.P.S., Balan, V. and Dale, B.E. (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96, 219–231

    Article  Google Scholar 

  15. Klinke, H.B., Thomsen, A.B. and Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66, 10–26

    Article  CAS  Google Scholar 

  16. Zhu, Y., Lee, Y.Y. and Elander, R.T. (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol. 124, 1045–1054

    Article  Google Scholar 

  17. Viamajala, S., Selig, M.J., Vinzant, T.B., Tucker, M.P., Himmel, M.E., McMillan, J.D. and Decker, S.R. (2006) Catalyst transport in corn stover internodes: elucidating transport mechanisms using Direct Blue-I. Appl. Biochem. Biotechnol. 129–132, 509–527

    Article  Google Scholar 

  18. Laine, J., Stenius, P., Carlsson, G. and Strom, G. (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1, 145–160

    Article  CAS  Google Scholar 

  19. Brunner, E. (1988) Fluid mixtures at high pressures VI. phase separation and critical phenomena in 18 (n-alkane + ammonia) and 4 (n-alkane _ methanol) mixtures. J. Chem. Thermodyn. 20, 273

    Article  CAS  Google Scholar 

  20. Gillespie, P.C., Wilding, W.V. and Wilson, G.M. (1987) Vapor-liquid equilibrium measurements on the ammonia-water system from 313 K to 589K. AICHE Symposium Series 83, 97–127

    CAS  Google Scholar 

  21. Smolen, T.M., Manley, D.B. and Poling, B.E. (1991) Vapor-liquid equilibrium data for the NH3-H2O system and Its description with a modified cubic equation of state. J. Chem. Eng. data 36, 202–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Balan, V., Bals, B., Chundawat, S.P.S., Marshall, D., Dale, B.E. (2009). Lignocellulosic Biomass Pretreatment Using AFEX. In: Mielenz, J. (eds) Biofuels. Methods in Molecular Biology, vol 581. Humana Press, Totowa, NJ.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-213-1

  • Online ISBN: 978-1-60761-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics