Skip to main content

Photoorientation in Photosynthetic Flagellates

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Motile microorganisms react to a host of external stimuli, including light, gravity, the magnetic field of the Earth as well as thermal and chemical gradients, in their habitat in order to select a niche suitable for survival and reproduction. Several forms of light-induced behavior have been described in microorganisms including phototaxis, photophobic responses, and photokinesis. Other functions of photoreceptors are regulation of development and entrainment of circadian rhythms. Basically five types of photoreceptor molecules have been identified in microorganisms: BLUF proteins, cryptochromes, phototropins, phytochromes, and rhodopsins. The photoreceptors can control light-activated ion channels or activated enzymes. The responses to the different stimuli in their habitat can be connected in a complex network of signal transduction chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Häder, D.-P. (1998) Orientierung im Licht: Phototaxis bei Euglena gracilis. Mikrokosmos 87, 3–11.

    Google Scholar 

  2. Moir, J. (1996) Aerotactic response. Microbiology UK 142, 718–719.

    Article  Google Scholar 

  3. Ueda, M., Sako, Y., Tanaka, T., Devreotes, P., and Yanagida, T. (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294, 864–867.

    Article  PubMed  CAS  Google Scholar 

  4. Kuhlmann, H.-W., Brünen-Nieweler, C., and Heckmann, K. (1997) Pheromones of the ciliate Euplotes octocarinatus not only induce conjugation but also function as chemoattractants. J. Exp. Zool. 277, 38–48.

    Article  PubMed  CAS  Google Scholar 

  5. Nemec, P., Altmann, J., Marhold, S., Burda, H., and Oelschläger, H. H. A. (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368.

    Article  PubMed  CAS  Google Scholar 

  6. Blakemore, R. P. (1982) Magnetotactic bacteria. Ann. Rev. Microbiol. 36, 217–238.

    Article  CAS  Google Scholar 

  7. Iwatsuki, K. (1992) Stentor coeruleus shows positive photokinesis. Photochem. Photobiol. 55, 469–471.

    Article  Google Scholar 

  8. Häder, D.-P. (1979) Photomovement, in Physiology of Movement, Encyclopedia of Plant Physiology, vol. 7 (Haupt, W., and Feinleib, M. E., eds.). Springer, Berlin, pp. 268–309.

    Google Scholar 

  9. Cohn, S. A. (1993) Light dependent effects on diatom motility. Mol. Biol. Cell 4(Suppl), 168a.

    Google Scholar 

  10. Mikolajczyk, E. and Walne, P. L. (1990) Photomotile responses and ultrastructure of the euglenoid flagellate Astasia fritschii. J. Photochem. Photobiol. B:Biol. 6, 275–282.

    Article  CAS  Google Scholar 

  11. Wolken, J. J. and Shin, E. (1958) Photomotion in Euglena gracilis. I. Photokinesis. II. Phototaxis. J. Protozool. 5, 39–46.

    Google Scholar 

  12. Diehn, B. (1973) Phototaxis and sensory transduction in Euglena. Science 181, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  13. Engelmann, T. W. (1883) Bakterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Pflügers Arch. 30, 95–124.

    Article  Google Scholar 

  14. Nultsch, W. and Häder, D.-P. (1988) Photomovement in motile microorganisms - II. Photochem. Photobiol. 47, 837–869.

    Article  PubMed  CAS  Google Scholar 

  15. Doughty, M. J. (1993) Step-up photophobic response of Euglena gracilis at different irradiances. Acta Protozool. 32, 73–77.

    Google Scholar 

  16. Diehn, B., Fonseca, J. R., and Jahn, T. R. (1975) High speed cinemicrography of the direct photophobic response of Euglena and the mechanism of negative phototaxis. J. Protozool. 22, 492–494.

    Google Scholar 

  17. Barghigiani, C., Colombetti, G., Tranchini, B., and Lenci, F. (1979) Photobehavior of Euglena gracilis: action spectrum for the stepdown photophobic response of individual cells. Photochem. Photobiol. 29, 1015–1019.

    Article  Google Scholar 

  18. Iseki, M., Matsunaga, S., Murakami, A., Ohno, K., Shiga, K., Yoshida, C., Sugai, M., Takahashi, T., Hori, T., and Watanabe, M. (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415, 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  19. Kuhlmann, H.-W., Bräucker, R., and Schepers, A. G. (1997) Phototaxis in Porpostoma notatum, a marine scuticociliate with a composed crystalline organelle. Europ. J. Protistol. 33, 295–304.

    Article  Google Scholar 

  20. Haupt, W. (1966) Phototaxis in plants. Int. Rev. Cytol. 19, 267–299.

    Article  PubMed  CAS  Google Scholar 

  21. Hendriks, J., Gensch, T., Hviid, L., van der Horst, M. A., Hellingwerf, K. J., and van Thor, J. J. (2002) Transient exposure of hydrophobic surface in the photoactive yellow protein monitored with Nile Red. Biophys. J. 82, 1632–1643.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuoka, T., Sato, M., and Matsuoka, S. (1999) Photoreceptor pigment mediating swimming acceleration of Blepharisma, a unicellular organism. Microbios 99, 89–94.

    CAS  Google Scholar 

  23. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–251.

    Article  PubMed  CAS  Google Scholar 

  24. Rüffer, U. and Nultsch, W. (1990) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: I. Change in flagellar beat frequency. Cell Motil. Cytoskeleton 15, 162–167.

    Article  Google Scholar 

  25. Ringo, D. J. (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33, 543–571.

    Article  PubMed  CAS  Google Scholar 

  26. Hegemann, P. and Marwan, W. (1988) Single photons are sufficient to trigger movement responses in Chlamydomonas reinhardtii. Photochem. Photobiol. 48, 99–106.

    Article  Google Scholar 

  27. Feinleib, M. E. H. and Curry, G. M. (1971) The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol. Plant. 25, 346–352.

    Article  Google Scholar 

  28. Foster, K. W. and Smyth, R. D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44, 572–630.

    PubMed  CAS  Google Scholar 

  29. Nultsch, W., Throm, G., and Rimscha, J. (1971) Phototaktische Untersuchungen an Chlamydomonas reinhardii Dangeard in homokontinuierlicher Kultur. Arch. Microbiol. 80, 351–369.

    CAS  Google Scholar 

  30. Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K. (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759.

    Article  PubMed  CAS  Google Scholar 

  31. Nakanishi, K. and Crouch, R. (1995) Application of artificial pigments to structure determination and study of photoinduced transformants of retinal proteins. Israel J. Chem. 35, 253–272.

    CAS  Google Scholar 

  32. Spudich, J. L., Zacks, D. N., and Bogomolni, R. A. (1995) Microbial sensory rhodopsins: Photochemistry and function. Israel J. Chem. 35, 495–513.

    CAS  Google Scholar 

  33. Hegemann, P., Hegemann, U., and Foster, K. W. (1988) Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo. Photochem. Photobiol. 48, 123–128.

    Article  PubMed  CAS  Google Scholar 

  34. Hegemann, P., Gärtner, W., and Uhl, R. (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys. J. 60, 1477–1489.

    Article  PubMed  CAS  Google Scholar 

  35. Derguini, F., Mazur, P., Nakanishi, K., Starace, D. M., Saranak, J., and Foster, K. W. (1991) All-trans-retinal is the chromophore bound to the photoreceptor of the green alga Chlamydomonas reinhardtii. Photochem. Photobiol. 54, 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  36. Kreimer, G., Marner, F.-J., Brohsonn, U., and Melkonian, M. (1991) Identification of 11-cis and all-trans retinal in the photoreceptive organelle of a flagellate green alga. FEBS Lett. 293, 49–52.

    Article  PubMed  CAS  Google Scholar 

  37. Melkonian, M. and Robenek, H. (1984) The eyespot apparatus of flagellated green algae: a critical review, in Progress in Phycological Research, vol. 3. (Round, F. E., and Chapman, D. J., eds.), Biopress Ltd., Bristol, pp. 193–268.

    Google Scholar 

  38. Kreimer, G. (1994) Cell biology of phototaxis in flagellate algae. Int. Rev. Cytol. 148, 229–309.

    Article  Google Scholar 

  39. Foster, K. W. and Smyth, R. D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44, 572–630.

    PubMed  CAS  Google Scholar 

  40. Kreimer, G. and Melkonian, M. (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Europ. J. Cell Biol. 53, 101–111.

    PubMed  CAS  Google Scholar 

  41. Yoshimura, K. (1994) Chromophore orientation in the photoreceptor of Chlamydomonas as probed by stimulation with polarized light. Photochem. Photobiol. 60, 594–597.

    Article  CAS  Google Scholar 

  42. Land, M. (1972) The physics and biology of animal reflectors. Progr. Biophys. Mol. Biol. 24, 75–106.

    CAS  Google Scholar 

  43. Hegemann, P. and Harz, H. (1998) How microalgae see the light, in Microbial Resp-onses to Light and Time. Society for General Microbiology Symposium (Caddick, M. X., Baumberg, S., Hodgson, D. A., and Phillip-Jones, M. K., eds.), Cambridge University Press, pp. 95–105.

    Google Scholar 

  44. Schletz, K. (1976) Phototaxis bei Volvox - Pigmentsysteme der Lichtrichtungsperzeption. Z. Pflanzenphys. 77, 189–211.

    CAS  Google Scholar 

  45. Uhl, R. and Hegemann, P. (1990) Probing visual transduction in a plant cell. Optical recording of rhodopsin-induced structural changes from Chlamydomonas reinhardtii. Biophys. J. 58, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  46. Deininger, W., Kräger, P., Hegemann, U., Lottspeich, F., and Hegemann, P. (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J. 14, 5849–5858.

    PubMed  CAS  Google Scholar 

  47. Fuhrmann, M., Stahlberg, A., Govorunova, E., Rank, S., and Hegemann, P. (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J. Cell Sci. 114, 3857–3863.

    PubMed  CAS  Google Scholar 

  48. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., et al. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Nat. Acad. Sci. USA 100, 13940–13945.

    Article  PubMed  CAS  Google Scholar 

  49. Nagel, G., Szellas, T., Kateriya, S., Adeishvili, N., Hegemann, P., and Bamberg, E. (2005) Channelrhodopsins: directly light-gated cation channels. Biochem. Soc. Transact. 33, 863–866.

    Article  CAS  Google Scholar 

  50. Sineshchekov, O. A., Jung, K.-H., and Spudich, J. L. (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Nat. Acad. Sci. 99, 8689–8694.

    PubMed  CAS  Google Scholar 

  51. Suzuki, L. and Johnson, C. H. (2002) Photoperiodic control of germination in the unicell Chlamydomonas. Naturwissenschaften 89, 214–220.

    Article  PubMed  CAS  Google Scholar 

  52. Schmidt, M., Geßner, G., Luff, M., Heiland, I., Wagner, V., Kaminski, M., et al. (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18, 1908–1930.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner, V., Ullmann, K., Mollwo, A., Kaminski, M., Mittag, M., and Kreimer, G. (2008) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol. 146, 772–788.

    Article  PubMed  CAS  Google Scholar 

  54. Sineshchekov, O. A. 1991. Electrophysiology of photomovements in flagellated algae, in Biophysics of Photoreceptors and Photomovements in Microorganisms (Lenci, F., ed.), Plenum Press, New York, pp. 191–202.

    Google Scholar 

  55. Witman, G. B. (1993) Chlamydomonas phototaxis. Trends Cell Biol. 3, 403–408.

    Article  PubMed  CAS  Google Scholar 

  56. Beckmann, M. and Hegemann, P. (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochem. USA 30, 3692–3697.

    Article  CAS  Google Scholar 

  57. Calenberg, M., Brohsonn, U., Zedlacher, M., and Kreimer, G. (1998) Light- and Ca2+-modulated heterotrimeric GTPases in the eyespot apparatus of a flagellate green alga. Plant Cell 10, 91–103.

    CAS  Google Scholar 

  58. Schlicher, U., Linden, L., Calenberg, M., and Kreimer, G. (1995) G-Proteins and Ca2+-modulated protein kinases of a plasma membrane enriched fraction and isolated eyespot apparatuses of Spermatozopsis similis (Chlorophyceae). Eur. J. Phycol. 30, 319–330.

    Article  Google Scholar 

  59. Kreimer, G (2001) Light perception and signal modulation during photoorientation of flagellate green algae, in Photomovement, vol. 1 (Häder, D.-P., and Lebert, M., eds.), Elsevier, Amsterdam, pp. 193–227.

    Google Scholar 

  60. Fuhrmann, M. Aufbau und Sequenz des Chlamyopsingens 1996. University of Regensburg (diploma thesis).

    Google Scholar 

  61. Fuhrmann, M., Oertel, W., and Hegemann, P. (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 19, 353–361.

    Article  PubMed  CAS  Google Scholar 

  62. Ikemura, T. (1985) Codon usage and t-RNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13–34.

    PubMed  CAS  Google Scholar 

  63. Govorunova, E. G., Jung, K.-H., Sineshchekov, O. A., and Spudich, J. L. (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys. J. 86, 2342–2349.

    Article  PubMed  CAS  Google Scholar 

  64. Harz, H., Nonnengässer, C., and Hegemann, P. (1992) The photoreceptor current of the green alga Chlamydomonas. Phil. Trans. Roy. Soc. Lond. B 338, 39–52.

    Article  Google Scholar 

  65. Sineshchekov, O. A. and Govorunova, E. G. (1999) Rhodopsin-mediated photosensing in green flagellated algae. Trends Plant Sci. 4, 58–63.

    Article  PubMed  Google Scholar 

  66. Sineshchekov, O. A., Govorunova, E. G., Der, A., Keszthelyi, L., and Nultsch, W. (1992) Photoelectric responses in phototactic flagellated algae measured in cell suspension. J. Photochem. Photobiol. B: Biol. 13, 119–134.

    Article  Google Scholar 

  67. Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A. (1978) Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature 271, 476–478.

    Article  PubMed  CAS  Google Scholar 

  68. Harz, H. and Hegemann, P. (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351, 489–491.

    Article  CAS  Google Scholar 

  69. Sineshchekov, O. A (1991) Photoreception in unicellular flagellates: bioelectric phenomena in phototaxis. in Light in Biology and Medicine, vol. 2 (Douglas, R. H., ed.), Plenum Press, New York, pp. 523–532.

    Google Scholar 

  70. Linden, L. and Kreimer, G. (1995) Calcium modulates rapid protein phosphorylation/dephosphorylation in isolated eyespot apparatuses of the green alga Spermatozopsis similis. Planta 197, 343–351.

    Article  CAS  Google Scholar 

  71. Beck, C. and Uhl, R. (1994) On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J. Cell Biol. 125, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  72. Holland, E. M., Harz, H., Uhl, R., and Hegemann, P. (1997) Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas. Biophys. J. 73, 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  73. Braun, F.-J. and Hegemann, P. (1999) Direct measurement of cytosolic calcium and pH in living Chlamydomonas reinhardtii cells. Eur. J. Cell Biol. 78, 199–208.

    Article  PubMed  CAS  Google Scholar 

  74. Nonnengässer, C., Holland, E.-M., Harz, H., and Hegemann, P. (1996) The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions. Biophys. J. 70, 932–938.

    Article  PubMed  Google Scholar 

  75. Govorunova, E. G., Sineshchekov, O. A., and Hegemann, P. (1997) Desensitization and dark recovery of the photoreceptor current in Chlamydomonas reinhardtii. Plant Physiol. 115, 633–642.

    PubMed  CAS  Google Scholar 

  76. Piccinni, E. and Mammi, M. (1978) Motor apparatus of Euglena gracilis: ultrastructure of the basal portion of the flagellum and the paraflagellar body. Boll. Zool. 45, 405–414.

    Article  Google Scholar 

  77. Buder, J. (1919) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb. wiss. Bot. 58, 105–220.

    Google Scholar 

  78. Häder, D.-P., Lebert, M., and DiLena, M. R. (1987) Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis. Plant Physiol. 6, 169–174.

    Google Scholar 

  79. Häder, D.-P. (1993) Simulation of phototaxis in the flagellate Euglena gracilis. J. Biol. Phys. 19, 95–108.

    Article  Google Scholar 

  80. Häder, D.-P. (1987) Polarotaxis, gravi-taxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch. Microbiol. 147, 179–183.

    Article  PubMed  Google Scholar 

  81. Creutz, C. and Diehn, B. (1976) Motor responses to polarized light and gravity sensing in Euglena gracilis. J. Protozool. 23, 552–556.

    Google Scholar 

  82. Lebert, M. and Häder, D.-P. (1997) Behavioral mutants of Euglena gracilis: functional and spectroscopic characterization. J. Plant Physiol. 151, 188–195.

    Article  PubMed  CAS  Google Scholar 

  83. Gualtieri, P., Barsanti, L., and Passarelli, V. (1989) Absorption spectrum of a single isolated paraflagellar swelling of Euglena gracilis. Biochim. Biophys. Acta 993, 293–296.

    Article  CAS  Google Scholar 

  84. Bucher, G., Scholten, J., and Klingler, M. (2002) Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12, R85-R86.

    Article  PubMed  CAS  Google Scholar 

  85. Briggs, W. R. and Christie, J. M. (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204–210.

    Article  PubMed  CAS  Google Scholar 

  86. Fong, F. and Schiff, J. A. (1979) Blue-light-inducted absorbance changes associated with carotenoids in Euglena. Planta 146, 119–127.

    Article  CAS  Google Scholar 

  87. Gualtieri, P. (1993) Euglena gracilis: is the photoreception enigma solved? J. Photochem. Photobiol. 19, 3–14.

    Article  CAS  Google Scholar 

  88. Hildebrandt, A (1974) Effects of some inhibitors in Euglena photomotion. in Progress in Photobiology, Proc. 6th Int. Congr. Photobiol. (Schenk, G., ed.), Dtsch. Ges. Lichtforsch. E.V., Frankfurt, p. 358.

    Google Scholar 

  89. Simons, P. J. (1981) The role of electricity in plant movements. New Phytol. 87, 11–37.

    Article  CAS  Google Scholar 

  90. Richter, P., Lebert, M., Korn, R., and Häder, D.-P. (2001) Possible involvement of the membrane potential in the gravitactic orientation of Euglena gracilis. J. Plant Physiol. 158, 35–39.

    Article  PubMed  CAS  Google Scholar 

  91. Richter, P. R., Schuster, M., Meyer, I., Lebert, M., and Häder, D.-P. (2006) Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis. Protoplasma 229, 101–108.

    Article  PubMed  CAS  Google Scholar 

  92. Richter, P. R., Schuster, M., Wagner, H., Lebert, M., and Häder, D.-P. (2002) Physiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaign. J. Plant Physiol. 159, 181–190.

    Article  PubMed  CAS  Google Scholar 

  93. Tahedl, H., Richter, P., Lebert, M., and Häder, D.-P. (1998) cAMP is involved in gravitaxis signal transduction of Euglena gracilis. Micrograv. Sci. Technol. 11, 173–178.

    Google Scholar 

Download references

Acknowledgments

Funding by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (HA 985–21/1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Häder, DP., Lebert, M. (2009). Photoorientation in Photosynthetic Flagellates. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics