Summary
This chapter will focus on responses that the chemoattractant cyclic AMP elicits in the motility system of Dictyostelium. These cells can be permanently transfected to express cytoskeleton-associated proteins tagged with fluorescent proteins. Multiple proteins that are distinguishable by the excitation and emission spectra of their tags can be simultaneously expressed. This makes it possible to relate the spatial and temporal patterns of their chemoattractant-induced translocation to each other in one cell by a single recording. Since actin polymerization in live cells progresses with velocities of about 3 μm/s, high image frequencies and short acquisition times in the millisecond range are required. Techniques of total internal reflection fluorescence (TIRF) and spinning-disc confocal microscopy provide appropriate temporal and spatial resolution for the analysis of actin dynamics.
Key words:
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Diez, S., Gerisch, G., Anderson, K., Müller-Taubenberger, A., and Bretschneider, T. (2005) Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 102, 7601–7606
Heinrich, D., Youssef, S., Schroth-Diez, B., Engel, U., Aydin, A., Blümmel, J., et al. (2008) Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell Adh. Migr. 2, 58–68
Landridge, P. D. and Kay, R. R. (2007) Mutants in the Dictyostelium Arp2/3 complex and chemoattractant-induced actin polymerization. Exp. Cell Res. 313, 2563–2574
Schirenbeck, A., Arasada, R., Bretschneider, T., Stradal, T. E. B., Schleicher, M., and Faix, J. (2006) The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl. Acad. Sci. U.S.A. 103, 7694–7699
Tuxworth, R. I., Weber, I., Wessels, D., Addicks, G. C., Soll, D. R., Gerisch, G., and Titus, M. A. (2001) A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329
Müller-Taubenberger, A. (2006) Application of fluorescent protein tags as reporters in live-cell imaging studies. Methods Mol. Biol. 346, 229–246
Fischer, M., Haase, I., Simmeth, E., Gerisch, G., and Müller-Taubenberger, A. (2004) A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium. FEBS Lett. 577, 227–232
Westphal, M., Jungbluth, A., Heidecker, M., Mühlbauer, B., Heizer, C., Schwartz, J.-M., Marriott, G., and Gerisch, G. (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7, 176–183
Schneider, N., Weber, I., Faix, J., Prassler, J., Müller-Taubenberger, A., Köhler, J., Burghardt, E., Gerisch, G., and Marriott, G. (2003) A Lim protein involved in the progression of cytokinesis and regulation of the mitotic spindle. Cell Motil. Cytoskeleton 56, 130–139
Mullins, R. D. and Pollard, T. D. (1999) Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 9, 244–249
Appleton, B. A., Wu, P., and Wiesmann, C. (2006) The crystal structure of murine coronin-1: A regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14, 87–96
Maniak, M., Rauchenberger, R., Albrecht, R., Murphy, J., and Gerisch, G. (1995) Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell 83, 915–924
Clarke, M. and Maddera, L. (2006) Phagocyte meets prey: uptake, internalization, and killing of bacteria by Dictyostelium amoebae. Eur. J. Cell Biol. 85, 1001–1010
Medalia, O., Beck, M., Ecke, M., Weber, I., Neujahr, R., Baumeister, W., and Gerisch, G. (2007) Organization of actin networks in intact filopodia. Curr. Biol. 17, 79–84
Aizawa, H., Sameshima, M., and Yahara, I. (1997) A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct. Funct. 22, 335–345
Tongyao, L., Mirschberger, C., Chooback, L., Arana, Q., Dal Sacco, Z., MacWilliams, H., and Clarke, M. (2002) Altered expression of the 100 kDa subunit of the Dictyostelium vacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. J. Cell Sci. 115, 1907–1918
Heuser, J., Zhu, Q., and Clarke, M. (1993) Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J. Cell Biol. 121, 1311–1327
Gingell, D., Todd, I., and Bailey, J. (1985) Topography of cell glass apposition revealed by total internal-reflection fluorescence of volume markers. J. Cell Biol. 100, 1334–1338
Gerisch, G., Bretschneider, T., Müller-Taubenberger, A., Simmeth, E., Ecke, M., Diez, S., and Anderson, K. (2004) Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys. J. 87, 3493–3503
Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005) Rab conversion as a mechanisms of progression from early to late endosomes. Cell 122, 735–749
Etzrodt, M., Ishikawa, H. C. F., Dalous, J., Müller-Taubenberger, A., Bretschneider, T., and Gerisch, G. (2006) Time-resolved responses to chemoattractant, characteristic of the front and tail of Dictyostelium cells. FEBS Lett. 580, 6707–6713
Dalous, J., Burghardt, E., Müller-Taubenberger, A., Bruckert, F., Gerisch, G., and Bretschneider, T. (2008) Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophys. J. 94, 1063–1074
Xu, X., Meier-Schellersheim, M., Jiao, X., Nelson, L. E., and Jin, T. (2005) Quantitative imaging of single live cells reveals spatiotemporal dynamics of multistep signalling events of chemoattractant gradient sensing in Dictyostelium. Mol. Biol. Cell 16, 676–688
Dormann, D., Libotte, T., Weijer, C. J., and Bretschneider, T. (2002) Simultaneous quantification of cell motility and protein-membrane-association using active contours. Cell Motil. Cytoskeleton 52, 221–230
Pang, K. M., Lee, E., and Knecht, D. A. (1998) Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr. Biol. 8, 405–408
Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M., and Faix, J. (2005) The diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7, 619–627
Faix, J., Dittrich, W., Prassler, J., Westphal, M., and Gerisch, G. (1995) pDcsA vectors for strictly regulated synthesis during early development of Dictyostelium discoideum. Plasmid 34, 148–151
Häder, D.-P., Claviez, M., Merkl, R., and Gerisch, G. (1983) Responses of Dictyostelium discoideum amoebae to local stimulation by light. Cell Biol. Int. Rep. 7, 611–616
Gerisch, G., Tsiomenko, A., Stadler, J., Claviez, M., Hülser, D., and Rossier, C. (1984) Transduction of chemical signals in Dictyostelium cells. In: Jones M.E. and Mathews C. (eds.), Information and Energy Transduction in Biological Membranes. Alan R. Liss, New York, NY, pp. 237–247
Yumura, S., Mori, H., and Fukui, Y. (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 99, 894–899
Rhoads, D. S., Nadkarni, S. M., Song, L., Voeltz, C., Bodenschatz, E., and Guan, J.-L. (2005) Using microfluidic channel networks to generate gradients for studying cell migration. In: Guan J.-L. (ed.), Cell Migration: Developmental Methods and Protocols. Humana, Totowa, NJ, pp. 347–356
Beta, C., Wyatt, D., Rappel, W.-J., and Bodenschatz, E. (2007) Flow-photolysis for spatiotemporal stimulation of single cells. Anal. Chem. 79, 3940–3944
Acknowledgments
I thank Mary Ecke for expert assistance. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (SPP1128).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Humana Press
About this protocol
Cite this protocol
Gerisch, G. (2009). Imaging Actin Cytoskeleton Dynamics in Dictyostelium Chemotaxis. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_26
Download citation
DOI: https://doi.org/10.1007/978-1-60761-198-1_26
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-60761-197-4
Online ISBN: 978-1-60761-198-1
eBook Packages: Springer Protocols
