Skip to main content

Spatiotemporal Stimulation of Single Cells Using Flow Photolysis

  • Protocol
  • First Online:
Book cover Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Quantitative studies of chemotactic signaling require experimental techniques that can expose single cells to chemical stimuli with high resolution in both space and time. Recently, we have introduced the method of flow photolysis (Anal. Chem. 79:3940–3944, 2007), which combines microfluidic techniques with the photochemical release of caged compounds. This method allows us to tailor chemical stimuli on the length scale of individual cells with subsecond temporal resolution. In this chapter, we provide a detailed protocol for the setup of flow photolysis experiments and exemplify this versatile approach by initiating membrane translocation of fluorescent fusion proteins in chemotactic Dictyostelium discoideum cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beta, C., Wyatt, D., Rappel, W. J., and Bodenschatz, E. (2007) Flow photolysis for spatiotemporal stimulation of single cells. Anal. Chem. 79, 3940–3944.

    Article  PubMed  CAS  Google Scholar 

  2. Lauffenburger, D. A., and Horwitz, A. F. (1996) Cell migration: A physically integrated molecular process. Cell 84, 359–369.

    Article  PubMed  CAS  Google Scholar 

  3. Van Haastert, P. J. M., and Devreotes, P. N. (2004) Chemotaxis: Signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634.

    Article  PubMed  Google Scholar 

  4. Bagorda, A., and Parent, C. A. (2008) Eukaryotic chemotaxis at a glance. J. Cell Sci. 121, 2621–2624.

    Article  PubMed  CAS  Google Scholar 

  5. Levchenko, A., and Iglesias, P. A. (2002) Models of eukaryotic gradient sensing: Application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63.

    Article  PubMed  CAS  Google Scholar 

  6. Levine, H., Kessler, D. A., and Rappel, W. J. (2006) Directional sensing in eukaryotic chemotaxis: A balanced inactivation model. Proc. Natl. Acad. Sci. USA 103, 9761–9766.

    Article  PubMed  CAS  Google Scholar 

  7. Meinhardt, H. (1999) Orientation of chemotactic cells and growth cones: Models and mechanisms. J. Cell Sci. 112, 2867–2874.

    PubMed  CAS  Google Scholar 

  8. Beta, C., Amselem, G., and Bodenschatz, E. (2008) A bistable mechanism for directional sensing. New J. Phys. 10, 083015.

    Article  Google Scholar 

  9. Breslauer, D. N., Lee, P. J., and Lee, L. P. (2006) Microfluidics-based systems biology. Mol. Biosyst. 2, 97–112.

    Article  PubMed  CAS  Google Scholar 

  10. Jeon, N. L., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Van de Water, L., and Toner, M. (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830.

    CAS  Google Scholar 

  11. Song, L. L., Nadkarni, S. M., Bodeker, H. U., Beta, C., Bae, A., Franck, C., et al. (2006) Dictyostelium discoideum chemotaxis: Threshold for directed motion. Eur. J. Cell Biol. 85, 981–989.

    Article  PubMed  CAS  Google Scholar 

  12. Irimia, D., Liu, S. Y., Tharp, W. G., Samadani, A., Toner, M., and Poznansky, M. C. (2006) Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip   6, 191–198.

    Article  PubMed  CAS  Google Scholar 

  13. Marriott, G., Roy, P., and Jacobson, K. (2003) Preparation and light-directed activation of caged proteins. Methods Enzymol. 360, 274–288.

    Article  PubMed  CAS  Google Scholar 

  14. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., and Whitesides, G. M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984.

    Article  PubMed  CAS  Google Scholar 

  15. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y., and Ingber, D. E. (2001) Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373.

    Article  PubMed  CAS  Google Scholar 

  16. Kessin, R. (2001) Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  17. Kimmel, A. R., and Parent, C. A. (2003) The signal to move: D. discoideum go orienteering. Science 300, 1525–1527.

    Article  PubMed  CAS  Google Scholar 

  18. Nerbonne, J. M., Richard, S., Nargeot, J., and Lester, H. A. (1984) New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature 310, 74–76.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald, J. C., and Whitesides, G. M. (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499.

    Article  PubMed  CAS  Google Scholar 

  20. MicroChem Corporation; http://www.microchem.com.

  21. Hagen, V., Bendig, J., Frings, S., Eckardt, T., Helm, S., Reuter, D., and Kaupp, U. B. (2001) Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long-wavelength UV/vis-activation. Angew. Chem. Int. Ed. Eng. 40, 1046–1048.

    CAS  Google Scholar 

  22. Beta, C., Fröhlich, T., Bödeker, H. U., and Bodenschatz, E. (2008) Chemotaxis in microfluidic devices - a study of flow effects. Lab Chip  8, 1087–1096.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The flow photolysis approach was developed at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, together with Danica Wyatt and Eberhard Bodenschatz. The initial ideas were designed in collaboration with Wouter-Jan Rappel from UCSD. We thank Loling Song and Sharvari Nadkarni for valuable contributions to our soft lithography protocol. Inspiring discussions with Albert Bae, Gabriel Amselem, Christian Westendorf, and William Loomis are acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Beta, C. (2009). Spatiotemporal Stimulation of Single Cells Using Flow Photolysis. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics